V. Absolutely Irreducible Equations f(xl,...,xn) = 0.

References: Ostrowski (1919), Noether (1922), Lang & Weil (1954),
Nisnevich (1954).

§1. Elimination theory.

Our goal is to derive an estimate for the number of zeros of an
absolutely irreducible polynomial in n variables. This will be
achieved in §5 . But in order to reach this goal we need
'Bertini's Theorem”, and for that in turn we need elimination theory.
For more information on elimination theory see Van der Waerden (1955) ,
Chapter 11 . Elimination theory is now considered old fashioned,
since most of its applications can be derived in a more elegant way from
algebraic geometry. On the other hand, in these lectures we do not presume
any knowledge of algebraic geometry. Moreover, elimination theory is
constructive and easily permits one to estimate the degrees and the

size of the coefficients of the constructed polynomials.

The reader will recall that given two polynomials over g field X ,

a a~1
c X 4+ c.X + ... + C

X 0 1 : a’

b b-1
X -
d0 + d1 + + db ,

g(xX)

the resultant R = R(c ,d_,d d) of f(X) and gX)

0'C17 19 dys e endy

is a certain polynomial in the coefficients of f and g . The
polynomial R vanishes precisely if either f and g have a common

root or if both leading coefficients are zero (c0 = do =0) . If

c (o] d d
0 # an 0 # 0 , then

where yl,...,ya and zl,...,zb are the roots of f and of g ,respectively.

R 1is homogeneous of degree b in co,...,c , and homogeneous of
a
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i i i J.o 3
. 0o "1 [( b
degree a in do,...,db , and each term cO c1 fee caad0 d1 e db
has
i 21 “ee i j j PN j = .
(11 + 12 + + ala) + (Jl + 232 + + be) ab
Let
* a a=1 a
£ (XO’XI) = cOX1 + c1XOX1 +oeee o+ caXO
and
* b b-1 b
=d ces
g (XO’XI) OX1 + dlxox1 + + dbxo

be the two forms associated with f£(X) and g(X) . We say that a

* *
pair (xO,xl) is a common zero of f and g if (xo,Xl) # (0,0)

a £¢ ) * d if €X
an xo,xl =g (xo,xl) =0, and i xo,x1 .

* *
Claim: f (XO’XI) and g (XO’XI) have a common zero if and only

if R=0.

* *
Proof: First suppose that f and g have the common zero
(xo,xl) . If XO # 0 then they have a common zero of the form (1,z) .

Here =z 1is a common root of f and g , and therefore R =0 . If

a
xo = 0 , then cox1 =0 and dox? =0 ., Since X cannot also be
zero, it follows that ¢y = dO =0, and R=0 .
Now suppose R = 0 . Either f and g have a common root =z ,

* *
in which case f and g have the common root (1,z) . Or

* *
CO = do =0, in which case (1,0) is a common root of £ and g .
This verifies the claim. It follows that the vanishing of the resultant

* *
has a more elegant interpretation in terms of f and g than of

f and g
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Let fl(XO,Xl,...,Xk) s eee fr(XO’X ,...,Xk) be forms with

1

coefficients in a field K . A common zero of fl,...,fr is an

Xk) # 0 with components in K such that

(n + 1l)-tuple (xo,xl,...,
fi(g) =0 for i =1,2,...,r . Suppose each of these forms is of
degree d , and that for j = 1,2,...,r ,
i i i
(6] 0,1 k
SRR ¢ % SRR R Y aJ) X)Xy e X

i +i o+ +i, =d ioll.'.lk
01 Tk

We extend the concept of a resultant of two polynomials to a resultant

system for r forms in k + 1 variables by giving the following

Definition: A resultant system for the forms (1.1) is a finite

set of forms gl,...,gs in variables

&) . .
A0 . l=<j<r ;i +i, + +oe +i_=4d) ,
1011...1k 0 1 k
with the property that g_{afJi i =0 for each i =1,...,s
071"k

if and only if the forms ¢ fr have a common zero.

1,...,

Example 1: Take k =1 and r =2 . The resultant system for
the forms fl(XO,Xl) , fz(Xo,Xl) consists of just one form (s = 1) =

the resultant of the two polynomials fl(l’xl) and fz(l,Xl) .

Example 2: Take

B&ppeenX) =2 Xy v e b2 X,

.

fn(Xl""’Xn) = aan1+-... + annxn ,
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i.e. a set of n 1linear forms in n variables., Again there is a
resultant system for these forms consisting of a single form g ,

namely the determinant

A11 A12 ces Aln

b3
Woees s
b=3

More generally, we can describe a resultant system for the forms

fl(Xl,...,Xn) =a X, + ... +a Xn
fm(Xl,...,Xn) =a X, + ... +a X .

If m< n , a resultant system for the forms fl,...,fm is the

identically zero form, since fl,...,fm always have a common zero.
If m > n , a resultant system is the set of all (n X n)~- subdeterminants
of the associated m X n matrix.

X.) be

THEOREM 1A: Let £, (X ,X.,...,X) , «o0 , £ (XX 000X

1701

forms of degree d as in (1.1) . There exists a resultant system

g.,,+..4,8_ , where each g,  1is a form in the variables AFJ? .
1 s i 1011...1k

of degree

k
2°_
Zk d L

.

LEMMA 1B: Let é(xl,...,xm) be a form of degree e , and let

hl(Yl,...,YZ),...,hm(Yl,...,Yz) be forms of degree e’ . Then the

polynomial
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g(¥ 5000,y = g(hl(Yl,...,YZ),...,hm(Yl,...,Yﬁ))

. /
is a form of degree ee .

Proof: Obvious.

We begin the

Proof of Theorem J]A: Let the forms fl(XO,...,Xk),...,fr(XO,...,Xk)

be given by (1.1) . The proof is by induction on k . If k =0 ,

then (1.1) becomes

(3,4 .
.2 b = 1< <sr .,
1.2) j(XO) ad XO ’ J
Clearly the forms
) ) (6)) N
gj(Ad seeenBy ) = Ad , 1< j<r,
¢y r)
form a resultant system for (1.2) . Moreover, deg gj(Ad ,...,Ad )y =1
for 1 £ j < r , which agrees with Theorem 1A .
Suppose that the theorem holds for forms in k variables

XO,Xl,...,Xk_1 . We introduce new variables Ul,...,Ur , Vl,...,Vr ,

and form two polynomials

f = Ulfl(XO""’Xk) + .. + Urfr(xo"'°’xk) ,
g = Vlfl(XO,...,Xk) + sa. + Vrfr(Xo""’Xk) ,
where
i i
(6)) (o k
lllX = .o .
fj(XO' ! k) 23 A i %o X

i ce.+i =d
10+ +lk
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If we view T and é as polynomials in the variable Xk , they have

a resultant

t),
Ro= RgyeeesXy 1 Upseee, UuVyee,V sall A s) .

If we write

and

then each ;i and each Ei is a form of degree i in XO""’Xk—l , is

linear in the variables U ,...,Ur,V ,...,Vr , and linear in the As .

1 1

In the resultant, a term ;0 ...a

2
j 23 oo j 2 2 [P dal , = .
Jp + 23, + + de +L+ 22 + + d d

The resultant is of degree d in 50""’;d’ and also of degree d
in bo,...,bd . Therefore

(i) R is a form of degree d in XO,...,Xk_1 H

5
(ii) R is a form of degree 2d in the A s ;

(iii) R is a form of degree 2d in Ul,...,U ,
r

Vl,...,Vr together .

) 3
Collecting terms involving like powers in the Us and V s , we

may certainly write

ne Y )

cea,u VyseeesV,

! Yy Uy Ve
AS)U ... U V., ...V
1 r r A

R
(0.4 1

cee,X
Upperey W, Vyyees, v 00 ' k-1’

+) That is, all variables A.
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Abbreviating the above coefficients by Ru v ? We observe that
:’:
(i) R is a form of degree d2 in X X H
u, v g i 07 ¥y
i
(ii) Ru v is a form of degree 2d in the A s .
hat A
LEMMA 1C: Suppose the variables AFJ) i are replaced by
10,... %
coefficients aFJ) ! in the field K . Then f_,...,f have a
_— 10"'1k —_— 1 r  —

?

common zero if and only if all of the polynomials R V(XO,...,Xk 1,a s)
L

ne

have a common zero.

Proof: Suppose fl,...,fr have a common zero (xo,xl,...,xk) .

if (xo,xl,...,xk_l) # (0,0,...,0) and the values xo,xl,...,xk_1

are substituted in T and E , then Xy is a common zero of

f and g , whence R = 0 . But since

0O =R = E

u

, u ur vy v,
Rg,g(xo""’xk—l’a S)U1 ...U} V1 ...Vr ,

< o1

- !
the polynomials R (XO,...,Xk_l,a s) must have (xo,...,x 1)

4y k=
as a common zero., If, on the other hand, (XO"°"Xk—1) = (0,...,0) ,
then ¢ fr have the common zero (0,...,0,1) . It follows that

11

the coefficient of Xi is zero for each f , hence also for f and
i

g . Again R = RX U‘S,V/s,a's) =0 , so all of the forms

ITRRRES ST

7
R (XO,...,X a s) are identically zero, and therefore have a

k-1’

II‘C
It

non-trivial common zero.

Conversely, suppose that (xo,xl,...,xk 1) is a common zero of
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)

the forms RE’Y (XO,...,Xk_l,a s). In particular, KyreoosXy 3 lie in
X . Then
) ) )
R(Xo’xl"°°’xk—1’U‘S’V'S’a's) =0 ,
so that either 50 = 50 =0 or f and é have a common zero X .
If 50 = 50 =0 , then f1’°"’fr clearly have the common zero
,0,...,0,1) . 1If ¥ and g have the common root X then X,

as a root of f is algebraic over K(U Ur) , and as a root

1,.00,

of g 1is algebraic over K(V .,V) . It follows that X is
r

100

algebraic over K . But since

T =uUf - e f cee =
f Uy 1(x0, ,xk) + + U, r(xo, ,xk) o,

and since each fj(xo,...,xk)éi , we conclude that

fj(xo,...,xk) =0 (L<j<r .

We now return to the proof of Theorem 1A . By the inductive
hypothesis, there is a resultant system %1,...,§S for the forms

R (XO,...,Xk_l) , with

Ilf-'
S

deg B, = 2k‘1<d2)2k_1“1 - o¥1g? -2 L<i<s) .
¥
Each coefficient of RE:Y was a form of degree 2d in the A s .
Let gl,...,gs be obt;i;ed from él,...,gs by substituting for each
coefficient of R its expression in terms of the A)s . By

[1E=1
<

s

Lemma 1C , it is obvious that gl,...,gs form a resultant system for

i
£ f . Finally, by Lemma 1B , each g, is a form in the A s

17ty

of degree
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k k
Kk~ - -
2d . 2 1d2 2 = 2kd2 1 .

This concludes the proof of Theorem 1A . We remark that the
forms Bys a8y have rational integer coefficients and are
independent of the field K if char K = 0 . In a field of
characteristic p , the coefficients of the forms gl,...,gs are
replaced by the residue classes modulo p of the corresponding
coefficients in characteristic zero.

If a 1is a polynomial with rational integer coefficients in any
number of variables, we define ”a“ as the sum of the absolute values

of the coefficients. For
n
Example: If a(X,Y) = (X—Y)n , then “a” =2

Theorem 1 D: In a field of characteristic zero, the forms

gl,...,gs of Theorem 1A have rational integer coefficients and

satisfy

k

4k 2
.d

llg, Il < 22 aAs<is<s) .

For the remainder of this section, all polynomials are assumed
to have rational integer coefficients. We first prove an analog to

Lemma 1B .

LEMMA 1E: Let %(Xl,...,xm) be a polynomial of total degree

e . Let bl(Yl""’Yt)""’bm(Yl""’Yt) be polynomials with

HbiH <¢ (1 <£is=<m . Then

g(Yl,...,Yt) = “g(bl(Yl,...,Yt),.,,,bm(Yl,...,Yt))
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has the property that

el < l&llv*

Proof: For any two polynomials a and b in any number of

variables, observe that
lavll < Yall . 1ol

For if a', b’ and (ab)’ are obtained from a , b and ab , respectively,

by replacing each coefficient by its absolute value, then
anl =1l vy ll < Na’’ll = {lall "l = flall fIn] -

Now a typical term in the polynomial g is b ...bm where

so that

ot o <y

1 bi
L

The lemma follows.
In order to prove Theorem 1D , we examine more closely the

polynomials introduced in the proof of Theorem 1A .
LEMMA 1F:

R x,yenn, Aol < ea’® .

, v 0 X1

e

3
Proof: We saw that R(XO,.. ,...,Ui,v ,...,Vr,A s)

"Xk—l’Ul 1

had total degree 2d in Ul""’Ur’V ...,Vr . Therefore in each

1)
u u v v

monomial U 1...U rV
1 r
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U, + v+ U + V. + ..0 + V. = 2d .
1 r 1 r

Hence for any R which is not identically zero, at most 2d of
b

e
<

the numbers ul,...,ur,v vr can be non-zero. Let

1777

¢ = min {2d,r} . Suppose, without loss of generality,that

U, yeoooU,V

* i
u, = vi =0 if i>c . Let R (Xo""’Xk—l’ 1 . 1""’Vc’A s)

i
be obtained from R by omitting all terms where some Ui or Vi

with 1 > ¢ occurs. Then

Ir, Loz o ol < IR

X
v k-1’

ne

*
R is clearly the resultant of the two polynomials

T o U (s eeenX)

=v,f cee ven f .
g v, 1(xo, ,xk) + + vc c(XO, ,xk)

-k _d -k
=b_ X +...+bd y

when considered as polynomials in Xk . If we write, for 1 < j=r,

&)} i0 1y
vos = A . X Tee.
fJ'(XO’ X Z: igee-i 0 Xe

i +...+i =d
10+ iy

k
the number of summands in f  is not more than (d + 1) . So the
J

% —%
number of summands in f or g is bounded by

k
@+ D =2d@ + DF = o
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—% ~%
Therefore the number of summands in each ai or b, 1is also
k+l L. . =% —% .
bounded by (2d) . But each coefficient in ai or b, is either
i

0 or 1, so that

HE:\\ < eot 5,1 = @a) ! G o=0,...,d) .

—% —k
The resultant of f and g is of degree 2d in

—% —% =k —%
aO,...,ad,bo,...,bd . This resultant is a (2d X 2d) - determinant,
so the resultant 1r satisfies Hr“ < (2d)! . By Lemma 1E ,
* * * * *
R = r(ao,...,ad ,bo,...,bd) has
* ) k+1 2d
el = @it ceca™™H™" |
Hence
*i
a-s)|| =< ||r"!
=, Ggreeerkypoa=oll = IR
24 2dk+2d
< @ ey
2dk+4
T
6dk
< @2d) .
Proof of Theorem 1D: We proceed by induction on k . If
k =0, then HgiH =1 and the theorem holds trivially. Suppose it has

been established that for k-1 one obtains the estimate

k=
24(k-1) d2 b
< = d) =2 : .
Hgin Crm1 ck__l()
~ ~ *
Let gl,---,gs be a resultant system for the R v s . By induction,
=1 _
H% H Sec (d2) since each R is of degree d2 in X _,..0,X .
i k-1 ’ 0’ L P |

s
<
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On the other hand, gi is obtained from @i by substituting for the

i
coefficients of each R their expressions in terms of the A s .
s

e
n<

By applying Lemmas 1E , 1F and observing that %i has degree

k-1 k
- 2 - - -
2k l(d2) 1. 2k 1d2 2

’

we obtain

k
k=1 2 -2
2 6kd| 2 d
< d .
lell = e, @ ((2d)
But by the inductive hypothesis,
5 24k—-4 2k
d = .
-y @) =2
Hence
k k
4k-4 2 k~1 . 2°-2
2 . . .
Hg H <9 d ) 22d 6kd . 2 d
i
k k
4k-4 2 k 2
6k 2
- 22 d s d
k
4k-4 k
@ 6k2")a”
k
24k 2
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§2. The absolute irreducibility of polynomials (I) .

Given a polynomial f(Xl,...,Xn) in n variables with
coefficients in a field K , we wish to investigate the absolute

irreducibility of f ; i.e., the irreducibility of f over X .

Suppose f has total degree at most d ~ 0 and is given

by
i i

@.D T peenX) = E 3 i x Yoz ™.

. . 1 n

i +...+41 =d

1 n

THEOREM 2 A: (E. Noether (1922)) There exist forms SRR -

in variables A, . (G, + ... +i < d) such that the above
—— 11...1n 1 n

polynomial f(X

1,...,Xn) is reducible over K or of degree <« d if

and only if

= <j= .
gj{ai”_i} 0 a=j=<s)
1
Moreover, if k = (n +d- 1) , then
_— n
2k
(i) deg g, =k a=<j=s) .

These forms depend only on n and d , and are independent of the

field K in the sense that if char K = 0 , they are fixed forms with

rational integer coefficients; while if char K =p (# 0) , they are

obtained by reducing the integral coefficients modulo p . In the

case when char K =0 ,
kzk
(ii) ngH < 4 1<j=s) .

Proof: We first dispose of the trivial cases. If d =1, the
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forms may be taken to be just the variables corresponding to the
coefficients of £ . If d22 and n =1, then f is always
reducible over K , 80 we may take s =1 and gl identically
zero. We may therefore assume that both d= 2 and n > 2 , from
which it follows that k = 2 .

Observe that f 1is reducible or deg f< d 1if and only if

f - gh with deg g< d , deg h< d . Now suppose f = gh where
J J
1 n
E(Xy,-e-,X ) = Y LN S
Jotestj sd=-1 1 n
1 n
1 kn
(X - erX ) = Y, ckl"'knxl I S
k. +.,..+tk =d-1
1 n

Then the coefficients of f must have the form

a. 4 = E: e 53 b . Ly ck K

4k =i C ok i
J1+ 1 11 Jn+ n 1n

.T-
for any il,...,in with il+...+ins 2d - 2 ). et g be fixed, not

identically zero, and consider the system of linear equations

(2.2) c¢.a, = z E b c (il+...+in52d-2)

ool j_eeald ceok
. j 4k =i T 17
1% In 0 n

in ¢ and the elements ck K
17k,

If g divides f , then (2.2)

has a solution with ¢ = 1 , hence has a non-trivial solution. Conversely,
if (2.2) has a non-trivial solution, then if ¢ = 0 , we would obtain
the contradictory result that gh = 0 while both g # 0 and h #£0

So in fact c # 0 , and there is a solution of (2.2) with ¢ =1,

1) we set a, . =0 for i. 4 ... + in >d .
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and hence g divides f.

We have shown that g divides f 1if and only if (2.2) has a

non~trivial solution in the variables c,{ck K } . The number of
17k,
. R : n+d-1 ;b
variables is k + 1 with k = n .  Therefore the condition

that g divide f is that all the (k + 1) X (k + 1) determinants,
say A13...,Ar , of the system of linear equations (2.2) vanish.

But each A, 1is a form in the coefficients b, 3 of degree k ,
i .

1°""n
and the number of these coefficients is also k . We know from

elimination theory, specifically Theorem 1A , that there exist forms

h1""hs in the coefficients of Al,...,Ar , such that the equations

[

A, = ... =A =0 have a non~trivial solution (in the b . s)
1 r Jyeeedy
if and only if h1 = s.. = hs = 0 . Also by Theorem 1A ,
k-1 k
- 2 -
©.3) deghizzklk T oy? A<is<s) .

If char K = 0 , it follows from Theorem 1D that

54k-4 kzk'l kzk
Q.0 HhiH s 2 <2 1<iss).

Now let gi be obtained from h, by substituting for the coefficients
i

of the forms A

1""’Ar their expressions in terms of the original
coefficients a, i of f . Each such coefficient is linear in the
11.-.
a. i with norm at most k! Combining (2.3) , (2.4) with Lemmas 1B ,
1 * o0
1 n

1IE , we obtain

1A
s
1A

deg g = deg h, =k (1 s)
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and
k-1
k~1 2 -
K 1

A

el = ln ety

k k-1
k2 k2 2k--l k2 -1

COROLLARY 2B: (Ostrowski (1919)) Let f(Xl,...,Xn) be a

polynomial of degree d > 0 with rational integral coefficients.

Suppose f 1is absolutely irreducible (i.e. irreducible over ®) .

Let p be a prime with

k
2
o> (dlfh¥*

H

d -1
n

Then the reduced polynomial modulo p is

where k :(n +

again of degree d and absolutely irreducible (i.e. irreducible over Fp).

Proof: Let f be given by (2.1) where the coefficients

{a_ i } are now integers. Since f is of degree d and absolutely
i PR
1 n

irreducible, in the notation of Theorem 2A not all the numbers

g. ({a, D are zero. Let us say g, ({a. . D #£0 . We have
i ileeed 1 i ...1n

1 n 1
the estimate
k2k kzk
0< |g1({ail"'in})\ <flg =l < dldh™ .

k

2
So if p> (4”f”)k , then the number gl({ai i D is still non- zero
““n
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modulo p . It follows, again by Theorem 2A , that the reduced

polynomial modulo P is of degree d and absolutely irreducible.

COROLIARY 2C: Let f(X,Y) be a polynomial with rational integer

coefficients which is absolutely irreducible. If N() denotes the

number of solutions of the congruence

f(x,y) = 0 (mod p) ,

then for large primes p ,

Np) =p + O(pl/z)

Proof: Combine Corollary 2B with Theorem 1A of Chapter III .

§3. The absolute irreducibility of polynomials (II) .

Let K and L be two fields with K< I . The_algebraic

closure of K in L , denoted by K° is defined as the set of

’

o
elements of L which are algebraic over X ., Clearly K is a field

o
and K< K € L .

THEOREM3 A: Suppose f(Xl,...,Xm,Y) is a polynomial with

coefficients in a field K , irreducible over K , and of degree

d>0 in Y . Further suppose that f is not a polynomial in only

XIE,Yp if K has characteristic p #£ 0 . Let ) be a

quantity satisfying f(xl,,..,xm,g) =0 , and let L = K(xl,...,xm,?))) .

o o
Let K be the algebraic closure of K in L . Then [K: K] is a

divisor of d and K° is separable over K . Moreover, the

polynomial £(X

1,...,Xm,Y) is absolutely irreducible if and only if

o
K =K.
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Theorems of this type are well known to algebraic geometers.

See, e.g., Zariski (1944) . See also Corollary 6C in Ch. VI.

Example: Consider the polynomial f(X,Y) = 2X2 - Y4 over the
field K = @ of rational numbers. Clearly f(X,Y) is irreducible
over @ . Choose ¥) so that @4 = 2X2 and let L = @X,3) . If we
put o = mz/x , then o = 2, so 42 € Qo . This means that § is
not algebraically closed in L , or Qo #€Q . By Theorem3A , f(X,V)

is not absolutely irreducible; in fact, we see directly that
2 2
XY = (W2 X-Y)W2ZX+Y)
is a factorization of f(X,Y) over Q(N/Z) .

o
Proof of Theorem3 A. We begin with the following remark: If K

is algebraic over K of degree d , then KO(XI,...,Xm) is algebraic
over K(Xl""’Xm) of degree d , and vice versa. If K° is separable
(or inseparable) over K , then KO(Xl,...,Xm) is separable (or inseparable)

over KX Xm) , and conversely. This follows from the argument

170
used in Lemma 2A of Chapter III .

Now observe that

(o] o
(3.1 K(Xl,...,Xm) <€ K (xl,...,xm) K (Xl,...,Xm,fD) = K(xl,...,xm,{l)) .

Since K(Xl,...,Xm,@) is an extension of K(Xl,...,Xm) of degree d ,
it follows that [Ko(Xl,...,Xm) : K(X,...,X )] divides d , whence
[KO: K] divides d by the above remark.

o
If f is absolutely irreducible, then f is irreducible over K .

o .
Hence Y) is algebraic of degree d over K (Xl""’Xm) ; that is ,

0 3 . 0 —
[x (xl,...,xm,))) : K (X ...,xm)] =d .

17
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From (3.1) it follows that K(Xl,...,Xm) = Kocxl,...,x ) , so that
m

For the remainder of the proof, we shall tacitly assume that
char K = p # 0 . Actually the case when char K = 0 is simpler, and
several steps may be omitted.

Let fl(X Xm,Y) be an irreducible factor of (X Xm,Y)

e 1700

over K such that

(3.2) fl(xl,...,xm,‘l)) =0 .

We normalize fl by requiring that the leading coefficient (in some
lexicographic ordering of the monomials) is 1 . Then every power of
fl also has this property. Let K1 be the field obtained from K

by adjoining the coefficients of fl . Let a be the smallest positive
integer such that every coefficient of fi is separable over K . If

b 1is a positive integer such that fi has coefficients which are
separable over K , then a‘b . For if b =at + r with 0=r< a,

then fi has separable coefficients, and by the minimal choice of a
A
£P

’

we have r =0 . Now has separable coefficients for some {

’

}2
hence atp , and a itself must be a power of p . We have

s
where K1 is the separable extension of K obtained from K by

a
adjoining the coefficients of fl

s
The polynomial g = fi has coefficients in K1 and is irreducible

s
over K1 , since its proper divisors (which would necessarily be

powers of fl) have coefficients which are not all separable over K ,
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hence do not all lie in Ki . Now g = fi divides fa , and since
g 1is irreducible, g divides f . Write § = [Ki K] and let

1 2 i
g( ) B g( ),...,g(é) be the distinct conjugates of g . Each g(l)

divides f , so the product

1
g( )g(Z) g(6)

But this product has coefficients which are separable over X , and

which are invariant under conjugation. Hence this product has

coefficients in K . Since f is irreducible over K , there exists

a constant c¢ € K such that

1 _@) ®)
g .

If a were a positive power of p , then g would be a polynomial in

X?,...,XE,YP , hence each conjugate would be such a polynomial, and

therefore f would be a polynomial in Xp ...,XS,Yp . But this is

l,
impossible by hypothesis. Hence a =1 . It follows immediately that

s
K1 = Kl , Whence that Kl is a separable extension of K .

Now f =v¢ f{l) .o ffé) has degree d in Y , so each factor
f{l) has degree d/6 in Y . Hence by (3.2) , J has degree d/8

over Kl(Xl,...,Xm) . Since [KlzK] =& , it follows that [Kl(Xl,---,Xm,

M: KX Xm)] =d . Since K& Kl’ and since also [K(Xl,...,Xm,@):

17
K(Xl,.-.,Xm)] =d , we have

Kl(xl,...,xm,m) = K(xl,...,xm,@) =L .

Thus Kl is contained in L and is algebraic over K , whence
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Now f was irreducible over Kl, in fact absolutely irreducible.

1
o o [o}
By the part of the theorem already proved, (Kl) = K1 . But (Kl) =K ,
o [} o
50 K1 =K , and K is separable over X ., Finally, if X = K,
then Kl = K and f is absolutely irreducible, This completes the
proof.

We are now able to finish the

Proof of Lemma 2B of Chapter III: In the notation of that lemma,

we need to show that if
i 2
[kx,z,9W: &®E&,2]=4d",

then f£(X,Y) is absolutely irreducible. Suppose £(X,Y) is not

absolutely irreducible. By Theorem 3A , K° #ZK . Let [KO(X): Kx)] =

u>1 and let [K(X,m): KO(X)] =v , so that uv =d . 1In the chain KX,Z) S
x°(X,7) - KO(X,Z,Q) < KO(X,Z,m,U) = K(X,Z,9,1) , the field extensions

are of respective degrees u,v,v , s0 that

[kx,z,9,0: kx,2)] = uv? < (uv)2 - a2 s

which completes the proof.

In 82 of Chapter IV we introduced an equivalence relation for quad-
ratic forms. We make a slight adjustment of that definition to define an
equivalence for polynomials in n variables over a field K. We say that
f(ﬁ),w g@? if there is a non-singular (n x n) matrix T and a vector ¢t ,

both having components in K , such that

X)) = g(ﬂé + 1=:) .

This is clearly an equivalence relation.
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LEMMA 3B: Suppose f(&)rv g(§) . If f 1is irreducible over K

(or absolutely irreducible), then so is g . Moreover, the total

degrees of f(X) and g(X) are equal.

Proof: Exercise. Notice that the first part of the lemma is
a generalization of Lemma 2B of Chapter I .
Let f(Xl,...,Xn) be a polynomial over X . For 1< f <n ,

we will write

—_—
£K e Xy XppprermoX)

when the polynomial is to be interpreted as a polynomial in the

variables XE Xn , with coefficients in the field K(Xl,...,Xz) .

IEERREE)

LEMMA 9C: 1If f(Xl,...,X ) 1is irreducible (over K} , then
T T 2 n el

I —

f(Xl""’XL ’X£+1”"’Xn) is irreducible (over K(Xl""’XL)) .

Proof: This follows from the unique factorization in

K[Xl""’Xz] . The details are left as an exercise.

We remark that if f(Xl,.'.,Xn) is absolutely irreducible
———

(i.e. irreducible over B it does not follow that f(X_,...,X ,
’ 1 )2

X ,...,%X)is absolutely irreducible (i.e. irreducible over K(X.,.4+,85)).

£+1 n 1 £

In fact if £ =n -1, the new polynomial is a polynomial in one
variable, which cannot be absolutely irreducible unless its degree is

one. As another example, the polynomial

2 2
f(X X3) =X, ~ X, X

1’X2’ 2 13

is absolutely irreducible, while f(Xl,Xz,Xs) has the factorization
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(X],X,,X,) = X, -«/xlxs) X, + X1X3)

over K(Xl) .

THEOREM 3D: Suppose f(Xl,...,Xn) is a polynomial over an

infinite field K . Suppose f is absolutely irreducible and of

degree d >0 . Let 1< g <n~2 . Then there is a polynomial

g ~ f such that

_—
B heeerX) s Xy 1y, X )

is absolutely irreducible and of degree d (in X

in Xy jaeenX)

We shall need

LEMMA 3E: Let J& L be fields such that L is a finite

separable algebraic extension of J . Then there are only finitely many

fields J’' with

22223: Let N be a finite separable algebraic normal extension of
J with L€ N. Let G be the Galois group of N over J , and let
H be the Galois group of N over L . Then HS G . From Galois
theory, we know that there is a one-one correspondence between fields
’

J' with Jc< J ¢ L and groups H' with HES H'S G . The number of

such groups B is finite, so the number of fields J’ is finite.

Remark: Separability is essential in Lemma 3E. For let F Dbe an

algebraically closed (hence infinite) field of characteristic p . Tzke
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J=FX,) €L = J(Xl/p,Yl/p)

and if ¢ € F , let

1/p ) /P . Cl/le/p

J = J (X + cY e )

Clearly JEC Jé € L , but for different choices of ¢ € F we get

different fields Jé , so that the collection of intermediate fields

is infinite.

We begin the

Proof of Theorem 3D: We shall tacitly assume that char K =p #0 ,

the proof for the case char K = 0 being easier. First observe that

f(Xl,...,Xn) is not a polynomial in X?,...,XE , for if it were then
pi pi
1 n
£ vee, X = o0 X
CSRRRRRE ) L] n
. . 1 n
iyse .,1n
. b
i i
1/p 1 n
- E: ail...i X1 coT Xn R

i, ,e0a,1
1’ "“n

contradicting the assumption that f(Xl,.n.,X ) 1is absolutely
n

irreducible. We change notation and write

IR ¢ AP Y

where m =n -~ 1 . After a linear transformation of variables
(Xi =X, +¢ Y ;1i1=12,...,m) we may suppose that f is of degree

d in Y and separable in Y . Let ¥ be a quantity satisfying
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f(le"‘;meS.D) =0,

©)
= “ee 5 . t = .
and let L K(Xl, ,Xm,D) For ¢ € K, pu Xy X1 + eX
Construct the fields K(xl(C)) and (K(xl(c)))o , the latter being
the algebraic closure of K(X{c)) in L .
LEMMA 3 F: For some c¢ € K ,
. (¢) )o (c)
KX = KX
( ( 1 ) ( 1 )
Proof: For every c¢ € K we have
K&, ee,x) € [k&))° & ,...,x)c L.
17 H m 1 27 ’ m

Note that L 1is a separable extension of K(Xl,...,Xm) of degree d .
By Lemma 3E , there are only finitely many subfields of L containing
K(Xl,...,Xm) . Hence there exist two distinct elements c,c' € K

such that

. \o (), \o
(K(Xl )) (xz,...,xm) =(K(X1 )) (xz,...,xm) ,

or

"
1 X ) .

(), \o o
(K(X1 )) (Xm)(X2’""’Xm—1) = (K(X )) (Xm)(Xz,..., 1

But since Xz,...,X ~

are algebraically independent over K&X_,X ) ,
m~1 1" m

it follows that

(©) Yo (CIOTATY
(K(Xl )) ‘(Xm) = (K(Xl )) (Xm)

7
For brevity we shall write X = X;c) and Z = X;c ) . By Theorem 34 ,
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c), o
K(X{ )) is a finite separable extension of K(X , and hence

()
1 )

there exists an element ¥ such that

(x(xfc))" - (x(x))" - K(X,%)

Similarly, there is a § with

(x(x1(° )))" - (K(z)>° = XK(@Z,9 .

Let X have the defining equation hl(X,I) = 0 , where h1 is
irreducible over K ; let § have the defining equation hz(Z,S) =0,
where h2 is irreducible over K . Now by Theorem 3A and the absolute
irreducibility of f , K = Ko , so that K is algebraically closed in
L . It follows that K is algebraically closed in K(X,¥) and in
K(z,8) . Then by Theorem 3A again, h1 and h2 are absolutely

irreducible. Hence if ¥ is of degree d1 over XK(X) and if 8§

is of degree d2 over K(Z) then

’

[kx,2,2,8: kX,2)] = d,d,

by Lemma 2A of Chapter III . But we have

K(X,Z,%) = (K(Xfc))>o x) = (K(X(c )))o X)) = K(X,2,9 ,
m 1 m

so that

K(X,2,%) = KX,Z,8 = K(X,z,X,8) .

These three fields are extension of K(X,Z) of respective degrees

and therefore d, =d_ =1 .

d d t = =
d and d1 5 2 so tha d1 d dld2 R 1 2

1’72 2

7 /
Hence (K(X;c)))o = K(X;c)) and (K(X{c )ao = K(Xic )) , which proves

the lemma.



204

We now conclude the proof of Theorem 3D . We may write

(c)

f(Xl,...,XmY) = g(Xl

y Koy eoesX V)

where ¢ € K is obtained from Lemma 3F and where

g(X,Xz,...,Xm,Y) = f(X - me’xz""’xm’Y) .
Clearly g(X;c),Xz,...,Xm,m) =0 and g is irreducible. But
—m——
g(X;CZXz,...,Xm,Y) is absolutely irreducible (i.e., irreducible over

K(Xf:)) ) because (K(X{c)))o = K(X{C)) . By a change of notation,

-
g(Xl,Xz,...,Xm,Y) is absolutely irreducible. This new polynomial is

clearly equivalent to f and is of degree d in Y . This process

(©)

must now be repeated by setting X2 = X2 + cXm with ¢ € K, etc.,
to obtain the result. Note that in the last step Xéc)z 4 + cXm ,

hence that we certainly do need the condition £ =m - 1= n ~ 2 .

§ 4. The absolute irreducibility of polynomials (III) .

Let K be a field. We have denoted by Kn the n-dimensional
vector space over K consisting of n-~tuples (xl,...,xn) with

components in K . Suppose M is an m~dimensjonal linear manifold

in K, where 1 <m=<n. Then M has a parameter representation
§ = yO + Ul Zl + oee. + Uﬁ Zm B

where y € K" y With yo,...¥ linearly independent,

20 ’ Z—l vty =m

and where U ..,Un are parameters. We write X = L(y). Suppose

1’

M has another parameter representation
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’ ’

L(U) m:m'

+ e

It »s
1]
1
1N
+
[}
[
It
=~
+
(an)
at

n
=
[
+\
(3

Then U , where T 1is a non-singular (m X m)-matrix over
n \
K and t € K , hemce L(TU' + t) =L'(U). If £&X;,...,X) isa

polynomial with coefficients in XK and M is a linear manifold with

parameter representation L(U) , put

fL(g) = £(L)-

If L’ is another parameter representation of M , then

£U) = 2@ = £@EY + D) = £ (T + D .

Hence the polynomial fL is determined by M up to equivalence in

the sense of §3 . One can therefore speak of the "degree of f on

M' and of the irreducibility or absolute irreducibility of f on M.

LEMMA 4A: Suppose f(Xl,...,Xn) has coefficients in an infinite

field K , is of degree d > 0 and is absolutely irreducible. Let

n = 3 and suppose that m is such that 2 < m< n . Then there exists

a linear manifold M of dimension m such that f 1is of degree d

and absolutely irreducible on M .

Proof: We may replace f by an equivalent polynomial. We may
therefore assume by Theorem 3D that

——

B peeenX K e X))

is of degree d (in X ...,X ) and is absolutely irreducible.
n n

-m+1’

By Theorem 2A , for polynomials in m variables of degree at most
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d , there is a system of forms g SRR - in the coefficients so

1!
that the polynomial is reducible or of degree < d precisely if

gl = el = gs =0 . In our case, the coefficients are polynomials in

Xl,...,Xn_m , So that we may write

= RS s i S 3
g gi(Xl, X ) (1 <i<s)

—_—
Since f(Xl,...,X .,Xn) is of degree d and is

X .o
n-m’ n-m+1’

absolutely irreducible, we must have some g_(Xl,---,Xn m) #0 ,
i -

say for simplicity gl(X Xn_m) #£0 . Since K 1is infinite there

prree

exist elements t R n € K such that gl(tl,...,tn_m) # 0. Then

1’ n~
the polynomial

t cee,t X eee,X
( 1’ ’ "nem’ n-m+1’ ’ n)

in variables X ..,Xn is of degree d and absolutely irreducible.

n-m+1’ "
This means simply that the polynomial f on the manifold M given

by

is of degree d and absolutely irreducible, which proves the lemma.
Let M be a linear manifold of dimension m Z 2 with parameter

representation

(4.1)

>4

= L(g) =¥+ Ul Yyt oeee Um Yy

.

The polynomial f is absolutely irreducible and of degree d precisely

L

if not all of certain froms SERERE - in the coefficients of fL

vanish. We have g = gi(zo,...,gm) , where gi(z ""’zm) are
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polynomials in n(m + 1) variables. Since there exists a manifold M
on which f 1is of degree d and absolutely irreducible, not all

these polynomials gi(ZO’Yl""’Xn) are identically zero.

Let F be a subfield of K . We shall say that a linear manifold
n
M in K is generic if it has a parameter representation (4,1)

where the n(m + 1) components of y are algebraically

Yor¥yr-en
independent over F . (That is, they satisfy no non-trivial polynomial
equation in n(m + 1) variables with coefficients in F). More
precisely, one should say that M is generic over F . Suppose

f(Xl,...,Xn) has coefficients in F and is absolutely irreducible.

Then some gi(ZO""’Zn) # 0 , whence gi(go,...,zn) #0 if the

components of ZO’XI""’Xn are algebraically independent over F .

Thus f 1is absolutely irreducible on M . We thus have

THEOREM 4B: Let f(X) € F[g] be absolutely irreducible and of

degree d . Then on a generic linear manifold M of dimension m

(2 £m<n) , the restriction of f 1is again absolutely irreducible

and of degree d .

This theorem, or rather a generalization of it, is sometimes
called Bertini's Theorem. It is connected with work of the Italian

geometer Bertini (1892) .

Example: Take n =3 and m = 2 . The polynomial
2 2 2
= - -1
f(xl,xz,XB) X, + X, - Xg
defines a hyperboloid of one shell in 3-space. The intersection of
this hypersurface with a plane (a 2-dimensional linear manifold) can*)
be an ellipse, a hyperbola, a parabola, or if the plane is tangent

*) this includes the case when the plane is 'tangent to a point at
infinity".

) Note that the parameter representation is not unique.
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to the surface, two lines. The restriction of f to a plane is
reducible precisely if the intersection consists of two lines; that is,
precisely if the plane is tangent to the surface. It can be shown
that the tangent planes are the planes

alxl + a2x2 + a3x3 + ao =0
with a2 a2 a2 a2 0] Th lanes with a 0 are tangent
i 1 + 9 3 o = . e plan wi 0= e gen

to an infinite point of the hyperboloid, and the intersection of the
hyperboloid with such a plane consists of two parallel lines

(i.e., two lines which intersect at an infinite point). The other
tangent planes have an intersection with the hyperboloid which consists
of two intersecting lines (i.e., lines whose intersection is a finite
point) .

THEOREM 4C: Let f(Xl,...,Xn) be a polynomial over Fq of

degree d > 0 which is absolutely irreducible. Let n > 3 and let A
)

be the number of 2-dimensional linear manifolds M . Let B denote

u®

the number of manifolds oen which f 1is not of degree d or

2

k

2 d 1
is not absolutely irreducible. Let ¥ = 2dk where k =( * ) .
Then

B/A = ¥/q

(2)

Proof: Every linear manifold M has a parameter representation

B=¥* U Y+ U Y

where vy , Zl’ ZZ € F: , and gl and 22 are linearly independent.

{

If A’ is the number of such parameter representations, then

n, n n 1l 3n
A'=q @ -D@ - =59 .

2)

But each linear manifold M has

2
D=d’@-DE -
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different parameter representations, whence A = A’ . Now on a
?

2
manifold M( ) y

Xy = ¢
fL(=) (Zo + U1 Y, * Ué Zz)

is a polynomial in Ul’UZ . By Theorem 2A , there are forms
gl,.,.,gs in the coefficients of this polynomial such that
gl = ... gs = 0 is equivalent to the polynomial being of degree < d

or irreducible. The degree of each g, was at most
1

say, where k =(d ; 5 .  (Note that fL is a polynomial in 2 variables).

The coefficients of f(zO + U, y. + U, y,) are polynomials in the

1 =1 2 =2

coordinates of XO’ Xl’ of degree at most d . Substituting these

¥

coefficients into gl,...,gs , we obtain polynomials hl""hs in the

coordinates of y each of degree at most dy’ , and having

Yor Yq7 Yg o

y. + U, y,) 1is of degree < d or

the property that f(y__0 + U Y1 o Yo

1

reducible if and only if hi(XO’ ¥y, ) =0 for i=1,...,8 .

Yo
@

Since the restriction of f to a generic manifold M is absolutely

irreducible, some hi = hi(ZO’ Zl, 32), say hl’ is not identically

zero. By Lemma 3A of Chapter IV, the number of Yor Y90 ¥ with

- 2
hlgkr pag) ;2) =0 1is at most d Q'qsn ! . But since each M( ) has D

representations,
3n-
Bsd\ll'qnl/D-

Hence

ot

B/A < d V' q3 _1/A's 2d V' /q = ¥/q .
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§ 5. The number of zeros of absolutely irreducible polynomials in

n variables.
In this section we shall allow the symbols w(q,d) and ¥x(d)

to take on either one of the following interpretations:

@) w@,d =42 &% M y@ =250 d°

A1) wlg,d = (- D@- a2 +d®, y@ =1.

So if f(,Y) is a polynomial with coefficients in Fq , absolutely

irreducible and of degree d > 0 , then

(5.1) IN - d <wg,d

whenever ¢ > ¥ (d) , where N is the number of zeros of f(X,Y)

With interpretation (i) , this statement has been proved as Theorem 14
of Chapter III, However the statement also holds under interpretation

(ii), as follows from the study of the zeta function of the curve f(x,y)

(Weil (19484¢), Bombieri (1973)), and as may be known. to a more sophisticated

reader.

THEOREM 5A:; Suppose f(Xl,...,Xn) is a polynomial over F

of total degree d > 0 and absolutely irreducible. Let N be the

number of zeros of f in Fz . Then

(5.2) N- Y s " 2wgd + 24D

where W was defined in Theorem 4C.

If interpretation (i) is used, we obtain

n-1 n-2 5/2 172
N-gq | £q “¢2 d/q/+2d\11)
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If we use interpretation (ii) then

N q“'2<(d-1> @2q% + & + 24 \1:)

2

qn— (3/2) + 3d ¥ qn_ .

< (d-1Dd-~-2)

This theorem is due to Lang and Weil (1954) , and also Nisnevich (1954) .

However, no value of the constant 2d \ was given . We now begin the
. . . . @) . n
Proof: For a 2-dimensional linear manifold M in Fq ,
) ) .
let NM ) be the number of zeros of f on M . Every point

of Fz lies on exactly

_ (qn - 1)(qn - Q)

E
(q2 - 1)(q2 - q)

manifolds M(z) . Thus

1 @
(5.3) N=g ), N .

Observe that by the property of w(q,d) discussed above and by

Lemma 3A of Chapter IV, we have for q > w(d) ,

2
w(q,d) if f is absol. irred. on M( ),
@) . . . ) 2)
(5.4) v “)-4q| ={ dq if f is not identically zero on M
2
q2 if f = O identically on M( ) .

LEMMA 5B: Let f(Xl,...,Xn) be a polynomial over Fq , of degree

d> 0 and irreducible. Suppose f is not equivalent to a polynomial

g X ) , where only n - 2 variasbles appear. As in Theorem 4C

2
let A be the number of 2-~dimensional linear manifolds M( ). Let C

SERRTYS SN
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be the number of manifolds M(z) where f 1is identically zero. Then
3 2
C/Asd /q .
Proof: Consider the planes M(z) parallel to the plane
* n-2 *
X, = «v. = X = 0 ; these number A = q . Let C be the number

1 n-2

of those parallel planes on which f is identically zero. A typical

plane of this type is

The polynomial f can, of course, be written as

i JJ
f e = een
Xy X)) E P, &y ,Xn_z)xn_lxn
i,J
If £ 1is identically zero on M(2) , then
ij(cl" ,cn_2) =0
for all i1 and j . If these polynomials p_j have a common factor
i

g(Xl,...,Xn 2) of positive degree, then g divides f and, since

f is irreducible , f = cg . But by hypothesis f is not a polynomial

in only n - 2 variables, hence the pij have no proper common factor.

By Lemma 3D of Chapter IV, the number of common zeros (cl""’cn—Z)
of the polynomials Pij is at most d3qn_ll . It follows that
c* < d3qn_l+ and

* * 3 2
c/a sd/q° .

The same argument holds for planes parallel to any given plane, and
the result follows.

We now continue the
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Proof of Theorem 5A: The proof is by induction on n. The case

n =1 1is completely trivial, and the case n = 2 holds by what we
said above, If f~ g where g 1is a polynomial in n - 2 variables,
2
then the number of zeros of f is ¢ times the number N’ of zeros
n-2

of g in Fq . 8o by induction

n-3 n-4
In' - q < q (w(q,d) + 2d \I/) )
whence (5,2) . We may therefore suppose that f is not equivalent

to a polynomial in n - 2 variables. Assume at first that q > yx(d)

From (5,3) and (5,4) we find that

!N-%EQIS%((m(q,d)Zl+dq S(; 1+q2 ZJ 1)
M(2) M(2) " ) 2)
f not absol. f =
irred.

In our established notation, it follows that

n-1 1 2
N-gq | = 5 (w(q,d)A + dgB + g C)

(A/E) (w(q,d) + dq (B/A) + q2(C/A€

A

qn-2 (w(q,d) + d ¥+ d3>

A

n-2
q ((D(q,d) + 2d QJ .
On the other hand if g < x(d) , then q2 < 2d ¢ , whence
n-1 n n-2
|N—q l<q < q (w(q,d)+2d\1’).

COROLLARY 5(C: Suppose f(Xl,...,Xn) is a polynomial with

rational integer coefficients which is of degree d and absolutely

irreducible., For primes p , let N(p) be the number of solutions of

the congruence
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f(x .,xn) =0 (mod p)

177"
Then as p > & ,

N ="y o [P @)

Proof: The proof is a combination of Theorem 5A and Corollary

2B .
The error terms of Theorem 5a in the two possible interpretations
are
5/2 n- 2 n-2

ﬁd/qn(s/)+0(q )

and
n~ (3 /2) n-2
(5.5) d-1d ~ 2)q / + 0 (q ).
It may be shown (bVqL (1948a)) that when n = 2 , the
1
1

exponent 5 in the error term (d - 1)(d - 2)q2 + 0(1) 1is best

possible. Also the constant (d - 1)(d - 2) is best possible.
If g(X,Y) is a polynomial in 2 variables with N’ zeros , then the

; n-2

polynomial f(X Xn) = g(Xl,Xz) in n variables has N = N'qg

177
zeros. Hence the exponent n - (3/2) and the constant (d - 1) (d - 2)
in  (5.5) are best possible for every =n .

On the other hand the constant 2d ¥ in (5.2) is certainly
too large. This is especially bad if one wants to estimate how large q
must be in order that N > 0. Wwith (5.2) one needs that q is

certainly larger than 2d ¥ , hence that q is very large as a function

of d .
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Schmidt (1973) applied the method of Stepanov directly to

equations in n variables and obtained

N> qn—l _ 3d3qn—(3/2)

’

3.6
provided q > con d

if (5.1) 1is used with (q,d) given by (i), and

N> ¢ o @D @2q™ 2 | 6272 srovided

3.5
q > cO(g)n a’te

if (5.1) is used with (q,d) given by (ii)
Much more is true for "non—singular" hypersurfaces by

.f
the deep work of Deligne (|ﬂ73)_)

+)But see the remark in the Preface,



