
V. Absolutely Irreducible Equations f(x I ..... x n) = 0. 

References: Ostrowski (1919), Noether (1922), Lang & Well (1954), 

Nisnevich (1954). 

w Elimination theory. 

Our goal is to derive an estimate for the number of zeros of an 

absolutely irreducible polynomial in n variables. This will be 

achieved in w But in order to reach this goal we need 

'~ertini's Theorem", and for that in turn we need elimination theory. 

For more information on elimination theory see Van der Waerden (1955) , 

Chapter ll . Elimination theory is now considered old fashioned, 

since most of its applications can be derived in a more elegant way from 

algebraic geometry. On the other hand, in these lectures we do not presume 

any knowledge of algebraic geometry. Moreover, elimination theory is 

constructive and easily permits one to estimate the degrees and the 

size of the coefficients of the constructed polynomials. 

The reader will recall that given two polynomials over a field K , 

f(X) = Co Xa C l  x a - 1  + + o . .  + C a 

doXb dlXb-I d b g(X) = + + ... + , 

the resultant R = R(eo,Cl,..~ b) of 

is a certain polynomial in the coefficients of f and 

polynomial R vanishes precisely if either f and g 

root or if both leading coefficients are zero (c 0 

c ~ 0 and d yg 0 , then 
0 0 

= d O 

a b 

i=l j=l 

f (X) and g(X) 

g . The 

have a common 

= o) if 

where yl,...,y a and Zl,...,z b are the roots of f and of g ,respectively. 

R is homogeneous of degree h in Co, ...,c a , and homogeneous of 
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i I i JO d31 Jb 
iOc I ... c ado ... db degree a in do,...,d b , and each term e 0 a 1 

has 

(i I + 2i 2 + ... + aia ) + (Jl + 2J2 + "'" + bJb) = ab 

and 

Let 

* a a-1 a 
f (Xo,X I) = CoX 1 + ClXoX 1 + ... + CaX 0 

* d b b-i b 
g (Xo,X I) = oXl + dlXoX + ... + dbX 0 

be the two forms associated with f(X) and g(X) . We say that a 

pair (Xo,X l )  i s  a common z e r o  o f  f and g i f  (Xo,X l )  N ( 0 , 0 )  

and f (Xo,X l )  = g (Xo,X l )  = 0 , and i f  Xo,X 1 E  K . 

Claim: 

if R = 0 . 

f (Xo,X l) and g (Xo,X l) have a common zero if and only 

Proof: First suppose that f* and g have the common zero 

~Xo,X I) If x 0 ~ 0 then they have a common zero of the form (1,z) . 

Here z is a common root of f and g , and therefore R = 0 . If 

a b 
x 0 = 0 , then CoX 1 = 0 and doX 1 = 0 . Since x I cannot also be 

zero, it follows that c O = d O = 0 , and R = 0 @ 

Now suppose R = 0 . Either f and g have a common root z , 

in which case f and g have the common root (l,z) Or 

c O = d O = 0 , in which case (1,O) is a common root of f and g 

This verifies the claim. It follows that the vanishing of the resultant 

has a more elegant interpretation in terms of f and g than of 

f and g . 
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Let fl(X0,Xl,...,Xk) , ... , fr(X0,Xl,.o.,Xk) be forms with 

coefficients in a field K . A common zero of fl,...,fr is an 

(n + l)-tuple (x0,xl,-..,x k) I 0__ with components in K such that 

f (x) = 0 for i = 1,2,...,r . Suppose each of these forms is of 

degree d , and that for j = 1,2,...,r , 

(i.I) fJ (Xo' X1 . . . .  'Xk) ~ (j) i i i = a. . XoOX11 .Xkk 
i 0 ~ i . . . i  k "~  

i0+il+...+ik=d 

We extend the concept of a resultant of two polynomials to a resultant 

system for r forms in k + 1 variables by giving the following 

Definition: A resultant system for the forms (i.I) is a finite 

set of forms gl,...,g s in variables 

A(J! 
i011--.i k 

(i < j < r ; i 0 + i I + ... + i k = d) 

la j) ) = 0 for each i = l,...,s with the property that gil i0il...i k 

if and only if the forms fl,...,fr have a common zero. 

Example i: Take k = 1 and r = 2 . The resultant system for 

the forms fI(X0,XI) , f2(X0,Xl) consists of just one form (s = i) - 

the resultant of the two polynomials fl(l,Xl) and f2(l,Xl) 

E x a m p l e  2 :  T a k e  

fl(Xl,...,Xn) = allX I + ... + alnX n , 

fn(Xl ...,X n) = anl~+ ... + a X ' nn n ' 
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i.e. a set of n linear forms in n variables. Again there is a 

resultant system for these forms consisting of a single form g , 

namely the determinant 

g = 

All AI2 -.. Aln 

Anl An2 ..- Ann 

More generally, we can describe a resultant system for the forms 

fl(Xl,...,Xn) = a l l X l  + ... + a l n X  n 

f m ( X l , . . . , X n )  = a m l X l  + . . .  + a X m n  n 

If m < n , a resultant system for the forms fl,...,fm is the 

identically zero form, since fl,...,fm always have a common zero. 

If m ~ n , a resultant system is the set of all (n X n)- subdeterminants 

of the associated m • n matrix. 

THEOREM IA: Let fI(X0,XI,...,Xk) , ... , fr(X0,Xl,...,Xk) be 

forms of degree d as in (i.i) . There exists a resultant system 

gl,...,gs , where each gi is a form in the variables A (j) 
i o i l ' ' ' i  k 

Of degree 

2 k d 2 k - 1  

LEMMA 1B: L e t  ~ ( X l , . . . , X  m) b e  a f o r m  o f  d e g r e e  e , and  l e t  

h l ( Y l , . . . , Y ~ ) , . . . , h  m ( Y I , . . . , Y ~ )  b e  f o r m s  o f  d e g r e e  e ~ Then  t h e  

polynomial 
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g(Yl ..... Y~) = ~(hl(Yl .... 'Y~)'''''hm(YI'''''Y~) ) 

is a form of degree ee'. 

Proof: Obvious. 

We begin the 

Proof of Theorem IA: 

be given by (I.I) 

then (i.i) becomes 

Let the forms fl(Xo,...,Xk),...,fr(Xo,...,Xk) 

The proof is by induction on k . If k = 0 , 

(1.2) fj(X0) = a(J)xdd 0 ' 1 < j < r . 

Clearly the forms 

�9 (i) . (r)) . (j) 
gj(~d '''''Ad = ~d ' 

form a resultant system for (1.2) . Moreover, 

l~j&r, 

deg gj(Ad(l ),...,Ad. (r)) = 1 

for i ~ j < r , which agrees with Theorem iA �9 

Suppose that the theorem holds for forms in k variables 

X o , X I , . . . , X k _  1 . We i n t r o d u c e  n e w  v a r i a b l e s  U 1 , . . . , U  r , V 1 , . ~  r , 

and form two polynomials 

= Ulfl(Xo,...,X k) + ... + Urfr(Xo,..~ k) 7 

= VIfI(Xo,...,X k) + ... + Vrfr(Xo,...,X k) , 

where 

fj(Xo,...,X k) = ~ Aio (j)...ikXiO O...Xkki 
i o +  �9 . . + i k = d  
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If we view 

a resultant 

and g as polynomials in the variable X k , they have 

t)~ 
R = R(Xo,...,Xk_l,Ul,...,Ur,Vl,...,Vr,all A s) . 

If we write 

and 

= ~0 xd + "'" + ad 

=~o o x k  d + . . .  + g  d , 

t h e n  e a c h  a .  and  e a c h  
1 

linear in the variables 

In the resultant, a term 

~'I is a form of degree i in XO,...,Xk_ I , is 

UI,...,Ur,VI,...,Vr , and linear in the A s . 

-Jo -Jd ~ 
. . .  bd d ao " ' ' a d  ~ 0 - h a s  

�9 . = d 2 
Jl + 232 + "'" + dDd + ~I + 2~2 + "'~ + d~d 

The resultant is of degree d in ao,...,ad, and also of degree 

in bo' .... bd " Therefore 

(i) R iS a form of degree d 2 in XO,...,Xk_ 1 ; 

(ii) R is a form of degree 2d in the A ~ ; 

(iii) R is a form of degree 2d in UI,...,U , 
r 

VI,...,V r together . 

) 
Collecting terms involving like powers in the U s and V S , we 

may certainly write 

u I, �9 .. ,u r v I, �9 �9 ,v r 

; u I u v 

v r ( X O , . . . , X k _ l , A  s ) U  . . .  U r V I . . . V r  r 
Rul,''-,Ur,Vl,.--, i r 

t) That is, all variables A. 
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Abbreviating the above coefficients by RU, v , we observe that 

(i) Ru,v is a form of degree d 2 in X0,...,Xk_ 1 ; 

(ii) R is a form of degree 2d 
u~v 

J 
in the A s . 

LEMMA IC: Suppose the variables AS j) are replaced by 
lO,..-i k 

(J) in the field K . Then fl,...,fr have a coefficients aio...i k 

common zero if and only if all of the polynomials Ru,v(Xo,...,Xk_ l, 

have a common zero. 

a s )  

Proof: Suppose fl '''''fr have a common zero (Xo,Xl,...,x k) 

I f  ( X o , X l , . ~  1) ~ ( 0 , 0 , . . . , 0 )  a n d  t h e  v a l u e s  X o , X l , . . . , X k _  1 

a r e  s u b s t i t u t e d  i n  ~ a n d  g , t h e n  x k i s  a common  z e r o  o f  

a n d  g , w h e n c e  R = 0 . B u t  s i n c e  

U•I.. u v I v 
C r 0 = R = RU,v(X0, .,Xk_l,a V 1 ...V r , 

u v 

the polynomials Ru, v (X0,...,Xk_l,a's) must have (x0,...,Xk_ I) 

as a common zero. If, o n  the other hand, (Xo,...,Xk_ I) = (0,...,0) , 

then fl '''''fr have the common zero (0,...,0,i) . It follows that 

d 
the coefficient of X k is zero for each f , hence also for ~ and 

i 

. Again R = R(Xo,...,Xk_I,U's,V's,a's) = 0 , so all of the forms 

Ru, v (Xo,...,Xk_l,a ~ s) are identically zero, and therefore have a 

non-trivial common zero. 

Conversely, suppose that (Xo,Xl,...,Xk_ I) is a common zero of 
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the forms R (Xo, a s). In particular, ... u,v ~ Xo' 'Xk-I 

. Then 

R(Xo,Xl,..~ = 0 , 

so that either ao = b0 = 0 or ~ and g have a common zero 

If ~0 = b0 = 0 , then fl,o..,fr clearly have the common zero 

x 
k 

( 0 , 0 , . . . , 0 , 1 )  . I f  ~ a n d  g h a v e  t h e  c o m m o n  r o o t  x k , t h e n  x k 

a s  a r o o t  o f  ~ i s  a l g e b r a i c  o v e r  K ( U 1 , . ~  , a n d  a s  a r o o t  

o f  g i s  a l g e b r a i c  o v e r  K ( V I , o . . , V  ) I t  f o l l o w s  t h a t  x k i s  
r 

algebraic over K . But since 

lie in 

= U l f l ( X o , . o . , x k )  + . ~  + U r f r ( X o , . . . , x  k)  = 0 , 

and since each fj(Xo,...,Xk)EK , we conclude that 

s 1 7 6  k) = 0 (i g j ~ r) . 

We now return to the proof of Theorem IA . By the inductive 

hypothesis, there is a resultant system ~i,.~ s for the forms 

Ru,v(Xo,...,Xk_ I) , with 

d e g  g i  = 2 k - l ( d 2 ) 2 k - l - i  = 2 k - l d 2 k - 2  ( i  ~ i ~ s )  

J 

Each coefficient of R was a form of degree 2d in the A s . u__,v 

Let gl,...,g s be obtained from gl,...,g s by substituting for each 

J 
coefficient of R its expression in terms of the A s . By 

u,v 

Lemma IC , it is obvious that gl,...,gs 

fl '''''fr Finally, by Lemma IB , each 

form a resultant system for 

~i is a form in the A s 

o f  d e g r e e  
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2d  . 2 k - l d  2 k - 2  = 2kd  2 k - 1  

This concludes the proof of Theorem IA �9 We remark that the 

forms gl~...,g s have rational integer coefficients and are 

independent of the field K if char K = 0 . In a field of 

characteristic p , the coefficients of the forms gl,...,g s are 

replaced by the residue classes modulo p of the corresponding 

eoeffieienB in charaeteristic zero. 

If a is a polynomial with rational integer coefficients in any 

number of variables, we define llall as the sum of the absolute values 

of the coefficients. For 

E x a m p l e :  

T h e o r e m  t D: 

g l , . . . , g s  

I f  a ( X , Y )  = (X-Y) n , t h e n  llall = 2 n 

I n  a f i e l d  o f  c h a r a c t e r i s t i c  z e r o ,  t h e  f o r m s  

o f  T h e o r e m  1A h a v e  r a t i o n a l  i n t e g e r  c o e f f i c i e n t s  a n d  

satisfy 

IIgi[I ~ 2 2 4 k ' d 2 k  (1 ~ i ~ s )  

F o r  t h e  r e m a i n d e r  o f  t h i s  s e c t i o n ,  a l l  p o l y n o m i a l s  a r e  a s s u m e d  

t o  h a v e  r a t i o n a l  i n t e g e r  c o e f f i c i e n t s .  We f i r s t  p r o v e  a n  a n a l o g  t o  

Lemma 1B . 

LEMMA IE: Let g(XI,...,X ) be a polynomial of total degree 
m 

e . Let b l ( Y 1 , . . . , y t ) , . . . , b m ( Y 1 , . . . , y t )  b e  p o l y n o m i a l s  w i t h  

l ib . l l  K * (1 K i ~ m) T h e n  
1 

g(Yl ..... Yt ) = ~(bl(Yl''~ )'''''bm(Yl'''''Yt ) ) 
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has the property that 

l!glt 11 11 ,e  

Proof: For any  two polynomials a and 

variables, observe that 

llabll If all . l!hll 

b in a n y  number of 

For if a t , b' and (ab)' are obtained from a , b and ab , respectively, 

by replacing each coefficient by its absolute value, then 

llabll = II <ab) ' l l  ~ l l a 'b ' l l  = Ila"!l ]lb"ll = liall Ilbii 

i i 
1 m 

Now a typical term in the polynomial g is b I ...b m where 

so that 

il + i2 + "~ + im ~ e , 

i i 
I l b l l .  " .bmmil % e 

The lemma follows. 

In order to prove Theorem ID , we examine more closely the 

polynomials introduced in the proof of Theorem IA . 

LEMMA 1 F: 

I / R u , v ( X 0  . . . . .  X k _ I , A  s)f[ ~ (2d)  6dk  

t 

P r o o f :  We saw t h a t  R ( X o , . . . , X k _ I , U I , . . . , U r , V I , . . . , V r , A  s)  

had  t o t a l  d e g r e e  2d  i n  U 1 , . . . , U r , V l , . . . , V r  . T h e r e f o r e  i n  e a c h  

U U V V 
�9 �9 r 

monomial U11 ... Ur r V11 .V r , 
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~; 2 d  . U__ I + ...+ U + V 1 + ... + V r r 

Hence for any R which is not identically zero, at most 
u,v 

the numbers Ul'''''Ur'Vl'''''Vr can be non-zero. Let 

C = min {2d,r} . 

u =v = 0 if 
i i 

be obtained from 

2 d  o f  

Suppose, without loss of generality, that 

. ! 
i > c . Let R (X0,...,Xk_I,UI,...,U,VI,...,Vc,A s) 

R by omitting all terms where some U. or V. 
1 1 

with i > c occurs. Then 

s>ll 11 *tt �9 

R is clearly the resultant of the two polynomials 

f = UIfI(Xo,...,X k) + ... + %fc(Xo,-..,Xk) 

- *  X d - *  
= a o  k + " ' "  + a d  ' 

g = Vlfl(X0,...,X k) + ... + Vefc(X0,...,X k) 

- *  d - *  
= b 0 X k + . . .  + b d , 

when considered as polynomials in X k . If we write, for 

i i k 

fj(X 0 ..... X k) = ~ A (j)i0...ikX00...x k 

i0+. �9 .+ik=d 

the number of summands in f is not more than 
J 

number of summands in f or g is bounded by 

(d + i) k . 

(d + l) kc ~ 2d(d + l) k K (2d) k+l 

l ~ j ~ r ,  

S o  t h e  
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Therefore the number of summands in each a or b. is also 
i 1 

k+l -* -* 
bounded by (2d) But each coefficient in a i or b i is either 

0 or 1 , so that 

]]a.*tl K (2d) k + l  , t]b;ll ~ (2d) k + l  ( i  = 0 , . . . , d )  
1 

The resultant of f and g is of degree 2d in 

a0,...,ad,h0,...,b d . This resultant is a 

so the resultant r satisfies 11rli ~ (2d>' 

R = r(a0,...,a d , b0,...,bd) has 

(2d • 2d) - determinant, 

By Lemma IE , 

Hence 

I1R*tl-<: (2d): ((2d) k+l) 2d 

ll Ru, v <x , .  , A - s ) l /  ~ I1~*11 
0 " " 'Xk-i 

< (2d) 2d (2d) 2dk+2d 

= (2d) 2dk+4d  

6dk 
(2d) 

Proof of Theorem ID: We proceed by induction on k . If 

k = 0 , then llgil I = 1 and the theorem holds trivially. Suppose it has 

been established that for k-i one obtains the estimate 

2k-i 
224 ( k - l )  

Ilgill ~ % - 1  - Ck- l~d~  : d 

L e t  g l , . . . , g s  

l!~ill ~ %_1<d% 

a ~ o be a resultant system for the s By induction, 
u~v 

is of degree d 2 in XO, , since each Ru, v ...,Xk_ 1 
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On the other hand, gi is obtained from gi by substituting for the 

coefficients of each R their expressions in terms of the A s . 
U,V 

By applying Lemmas IE , IF and observing that gi has degree 

2 k - l ( d 2 )  2 k - l - 1  = 2 k - l d 2 k - 2  

we obtain 

But by the inductive hypothesis, 

24k-4 d 2k 
Ck_l(d 2) = 2 

Hence 

224k-4 llg II d2k 
i 

= 224k-4 d 2k 

. 22d . 6 k d .  2 k -1 .  d 2k-2 

6k2  k d 2k 
�9 2 

= 2 (24k-4 + 6k2k)d 2k 

24k d 2k 
< 2 
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w The absolute irreducibility of polynomials (I) 

Given a polynomial f(XI,...,X n) in n variables with 

coefficients in a field K , we wish to investigate the absolute 

irreducibility of f ; i.e., the irreducibility of f over K . 

Suppose f has total degree at most d > 0 and is given 

by 

(2. l) f(Xl'''''Xn) = ail...i X I... X n 
n 1 n 

il+...+i ~ d 
n 

THEOREM2A: (E. Noether (1922)) There exist forms gl,.~ 

in variables Ai 1...i (il + "'" + in ~ d) such that the above 
n 

p o l y n o m i a l  f ( X 1 , . . . , X  n) i s  r e d u c i b l e  o v e r  K o r  o f  d e g r e e  < d i f  

and only if 

g J { a i l ' ' ' i n  } = 0 (1 g j ~ s)  . 

I n d 1 + 
Moreover, if k = ~ I n , then 

( i )  d e g  g .  < k 2k ( i  < j < s)  
J 

These forms depend only on n and d , and are independent of the 

field K in the sense that if char K = 0 , they are fixed forms with 

rational integer coefficients; while if char K = p (f O) , they are 

obtained by reducing the integral coefficients modulo p In the 

case when char K = 0 , 

 ii) 11%11 4 / ( i  ~ j ~ s )  

Proof: We first dispose of the trivial cases. If d = 1 , the 
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forms may be taken to be just the variables correspondiug to the 

coefficients of f . If d ~2 and n = 1 , then f is always 

reducible over K , so we may take s = i and gl identically 

zero. We may therefore assume that both d ~ 2 and n ~ 2 , from 

which it follows that k ~ 2 . 

Observe that f is reducible or deg f < d if and only if 

f = gh with deg g < d , deg h < d . Now suppose f = gh where 

Jl J 
�9 . X ...X n 

g(Xl' "''Xn) = ~ bjl...3n 1 n 

Jl +'''+jn ~d- 1 

k I k 

h(Xl'~ ) = ~ Ck l...kn X1 ...Xnn 

kl+...+k n~d- 1 

Then the coefficients of f must have the form 

= Z Z b e k 
ail'''in ' Jl'''Jn kl" n 

Jl+kl=il Jn+kn=in 

t) 
for any il,...,i with i +...+i % 2d- 2 Let 

n 1 n 
g be fixed, not 

identically zero, and consider the system of linear equations 

= ~ ,.. ~ b ..j Ckl...k (il+...+in ~2d-2) 
(2.2) c . all ...i n Jl" n n 

Jl+kl=il Jn+kn=in 

in c and the elements c If g divides f , then 
kl..-k n 

has a solution with e = 1 , hence has a non-trivial solution. 

(2.2) 

Conversely, 

if (2.2) has a non-trivial solution, then if c = 0 , we would obtain 

the contradictory result that gh = 0 while both g ~ 0 mnd h ~ 0 �9 

So in fact c ~ 0 , and there is a solution of (2.2) with e = i , 

T) We set ail...i = 0 for i I + ... + i n > d . 
n 



192 

and hence g divides f. 

We have shown that g divides f if and only if (2.2) has a 

non-trivial solution in the variables c,{Ckl...k } . The number of 

n 
J i 

variables is k + i with k = In + d - i] . Therefore the condition 
n l 

that g divide f is that all the (k  + 1) X (k  + l )  d e t e r m i n a n t s ,  

say AI,...,A of the system of linear equations (2.2) vanish. 
r' 

But each A. is a form in the coefficients b. of degree k , 
z Jl...Jn 

and the number of these coefficients is also k . We know from 

elimination theory, specifically Theorem 1A , that there exist forms 

hl''''hs in the coefficients of AI,...,A r , such that the equations 

= = 0 have a non-trivial solution (in the b s) 
A 1 .... A r jl...jn 

if and only if h ..... h = 0 . Also by Theorem 1A , 
1 s 

2 k-I 2 k 
(2.3) deg h. = 2 k-I k -i ~ k (1 ~ i ~ s) . 

1 

If char K = 0 , it follows from Theorem ID that 

2 2 4 k - 4  2 k - 1  k 2 k  
. 4 )  I]h.l[  ~ k ~ 2 (1 ~ i ~ S) �9 

1 

Now let gi 

of the forms 

coefficients 

be obtained from h by substituting for the coefficients 
i 

AI,...,A r their expressions in terms of the original 

a 

i 1 �9 �9 .i n 
of f . Each such coefficient is linear in the 

a 

i .ooi 
1 n 

with norm a t  most k'. Combining (2.3) , (2.4) with Lemmas IB / 

rE , we obtain 

deg gi 
2 k 

< *c = d e g  h .  = k (1 - ~ i = < s )  
1 
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and 
2 k - l _ l  

llgilt ~ llhilt (k,./?-1 

k 2k  k 2 2 k - 1  k 2 k - l - 1  
2 2 

2 k 2 k - 1  
< 2k  2k  +k 

2 k 
2 k 2 k2k  

k 2k 
= 4 

COROLLARY 2B:  ( O s t r o w s k i  (191911 L e t  f ( X 1 , . . . , X  n) b e  a 

p o l y n o m i a l  o f  d e g r e e  d > 0 w i t h  r a t i o n a l  i n t e g r a l  c o e f f i c i e n t s .  

S u p p o s e  f i s  a b s o l u t e l y  i r r e d u c i b l e  ( i . e .  i r r e d u c i b l e  o v e r  ~ ) 

L e t  p b e  a p r i m e  w i t h  

p > (4Hfl!1 k2k , 

where k =(n + d - i) . Then the reduced polynomial modulo p is 
n 

a g a i n  o f  d e g r e e  d and  a b s o l u t e l y  i r r e d u c i b l e  ( i . e .  i r r e d u c i b l e  o v e r  Fp) �9 

Proof: Let f be given by ~.i) , where the coefficients 

{ail'''in } are now integers. Since f is of degree d and absolutely 

irreducible, in the notation of Theorem 2A , not all the numbers 

gi({ai l...in}) are zero. Let us say gl({a.ll...i n}) i 0 . We have 

the estimate 

2 k 2 k 

o < I gl({ail'"in}11 < 11glIJ.H~! k < (411fli1k 

2 k 

So i f  P > (4 l l f l l )  k , t h e n  t h e  n u m b e r  g l ( { a i l ' ' ' i n  }) is still non- zero 
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modulo p . It follows, again by Theorem 2A , that the reduced 

polynomial modulo p is of degree d and absolutely irreducible. 

COROLLARY 2C: Let f(X,Y) be a polynomial with rational integer 

coefficients which is absolutely irreducible. If N~) denotes the 

number of solutions of the congruence 

f(x,y) " 0 (mod p) , 

then for large primes p , 

N ~ )  = p + o ( p l / 2 )  

Proof: Combine Corollary 2B with Theorem IA of Chapter III. 

w The absolute irreducibility of polynomials (II) 

Let K and L be two fields with K ~ L �9 The algebraic 

closure of K in L , denoted by K ~ , is defined as the set of 

elements of L which are algebraic over K . Clearly K ~ is a field 

and K ~ K ~ ~ L . 

THEOREM3 A: Suppose f(Xl,...,Xm,~ is a polynomial with 

coefficients in a field K , irreducible over K , and of degree 

d > 0 in Y . Further suppose that f is not a polynomial in only 

X~,... X p YP ' m' i~f K has characteristic p ~ 0 . Let ~ be a 

quantity satisfying f(XI,...,X ,~) = 0 , and let L = K(XI,...,Xm,~). 
m 

Let K O be the algebraic closure of K in L . !hen [K~ K] is a 

divisor of d and K ~ is separable over K . Moreover~ the 

polyn~ial f(XI,...,X ,Y) is absolutely irreducible if and only if 
m 

o 
K =K. 
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Theorems of this type are well known to algebraic geometers. 

See, e.g., Zariski (1945) See also Corollary 6C in Ch. Vl. 

2 4 
E x a m p l e :  C o n s i d e r  t h e  p o l y n o m i a l  f ( X , Y )  = 2X - Y o v e r  t h e  

field K = ~ of rational numbers. Clearly f(X,Y) is irreducible 

over ~ . Choose ~ so that ~4 = 2X 2 and let L = ~(X,~) . If we 

put ~ = ~2/X , then 2 = 2 , so ~/2h o This means that Q is 

o 
not algebraically closed in L , or ~ ~ Q . By Theorem 3 A , f(X,Y) 

is not absolutely irreducible; in fact, we see directly that 

f ( x , , )  = x - x + 

is a factorization of f(X,Y) over Q(~2) 

Proof of Theorem3 A. We begin with the following remark: If K ~ 

is algebraic over K of degree d then KO(x ,...,X m) is algebraic 
' 1 

over K(XI,...,Xm) of degree d , and vice versa. If K ~ is separable 

(or inseparable) over K , then K~ ) is separable (or inseparable) 

over K(XI,...,X m) , and conversely. This follows from the argument 

used in Lemma 2A of Chapter IIl. 

Now observe that 

o 
( 3 . 1 )  K ( X 1 , . . . , X m )  c K ~  ) G K ( X 1 , . . . , X m ,  ~ )  = K ( X 1 , . . . , X m , ~ )  

Since K(XI,...,Xm, ~) is an extension of K(XI,...,X m) of degree d , 

it follows that [K~ ) : K(XI,...,Xm) ] divides d , whence 

[K~ K] divides d by the above remark. 

K ~ If f is absolutely irreducible, then f is irreducible over 

o 
Hence ~ is algebraic of degree d over K (XI,...,X m) ; that is , 

[K~ : K~ ..... X m)] = d 
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o 
From (3.1) it follows that K(XI,...,X m) = K (XI,..~ m) , so that 

o 
K = K 

For the remainder of the proof, we shall tacitly assume that 

char K = p ~ 0 . Actually the case when char K = O is simpler, and 

several steps may be omitted. 

Let fI(XI,...,Xm,Y) be an irreducible factor of f(XI,...,Xm,Y) 

over K such that 

( 3 . 2 )  fI(XI ..... Xm, ~) = 0 ~ 

We normalize fl by requiring that the leading coefficient (in some 

lexicographic ordering of the monomials) is 1 . Then every power of 

f also has this property. Let K be the field obtained from K 
1 1 

by adjoining the coefficients of f Let a be the smallest positive 
1 

a 
integer such that every coefficient of fl is separable over K . If 

b 
b is a positive integer such that f has coefficients which are 

1 

separable over K , then a~b ~ For if b = at + r with 0 ~ r < a 

r 
then fl has separable coefficients, and by the minimal choice of a , 

P has separable coefficients for some ~ , we have r = 0 . Now fl 

hence alp ~ , and a itself must be a power of p . We have 

s 
K c_ KI c KI , 

s 
where K 1 is the separable extension of K obtained from K by 

a 
adjoining the coefficients of fl " 

a s 
The polynomial g = fl has coefficients in K 1 and is irreducible 

s 
over K 1 , since its proper divisors (which would necessarily be 

powers of fl ) have coefficients which are not all separable over K , 
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a fa hence do not all lie in K~ Now g = fl divides , and since 

g is irreducible, g divides f . Write 6 = [K~ : K] and let 

(1) (2) (6) g (i) 
g , g ,...,g be the distinct conjugates of g . Each 

divides f , so the product 

(I) (2) g(5) I g g ~ f . 

But this product has coefficients which are separable over K , and 

which are invariant under conjugation. Hence this product has 

coefficients in K . Since f is irreducible over K , there exists 

a constant c E K such that 

(i) (2) (6) 
f =cg g ... g 

If a were a positive power of p , then g would be a polynomial in 

X~,...,X p YP hence each conjugate would be such a polynomial, and 
m' 

P X p yP therefore f would be a polynomial in XI''''' m' . But this is 

impossible by hypothesis. Hence a = 1 . It follows immediately that 

s 
K 1 = K 1 , whence that K 1 is a separable extension of K ~ 

o(I) _(5) has degree d in y , so each factor Now f = c I 1 ... i 1 

f(i) has degree d/6 in Y Hence by (3.2) , ~ has degree d/8 
1 

over KI(XI'''''Xm ) Since [KI:K ] = 6 , it follows that [KI(XI,...,Xm, 

9) : K(XI,-.-,X m) ] = d . Since K c K1 ' and since also [K(XI,... ,Xm, 9) : 

K(XI,...,X m) ] = d , we have 

K I(XI,...,Xm, 9) = K(XI,...,Xm, 9) = L . 

T h u s  K l i s  c o n t a i n e d  i n  L a n d  i s  a l g e b r a i c  o v e r  K , w h e n c e  

K l ~ K ~ 
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Now fl was irreducible over KI, Ln fact absolutely irreducible. 

By the part of the theorem already proved, (Kl)~ = K 1 . But (KI)~ = K ~ 

o o o 
so K 1 = K , and K is separable over K . Finally, if K = K , 

then K 1 = K and f is absolutely irreducible. This completes the 

proof. 

We are now able to finish the 

Proof of Lemma 2B of Chapter III: In the notation of that lemma I 

we need to show that if 

[ K ( X , Z , ~ , i I ) :  ( K ( X , Z )  ] = d 2 

then f(X,Y) is absolutely irreducible. Suppose 

absolutely irreducible. By Theorem 3A , K ~ I K . 

u > 1 and let [K(X,~): K~ = v , so that 

KO(x,z) ~ K~ c_ K~ = K(X,Z,~,1I) 

are of respective degrees u,v,v , so that 

[ K ( X , Z , O , I / ) :  K ( X , Z )  ] = u v  2 < (uv )  2 = d 2 , 

f(X,Y) is not 

Let [K O(x) : K(X) ] = 

uv d In the chain K(X,Z) c 

, the field extensions 

which completes the proof. 

In w of Chapter IV we introduced an equivalence relation for quad- 

ratic forms. We make a slight ad2ustment of that definition to define an 

equivalence for polynomials in n variables over a field K. We say that 

f(X) ~ g(X) if there is a non-singular (n X n) matrix T and a vector 

both having components in K , such that 

t , 

f(x) = g(TX + t) 
= = ___ 

This is clearly an equivalence relation. 
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LEMMA 3 B: Suppose f (X) ~ g(X) . If f is irreducible over K 

(or absolutely irreducible), then so is g . Moreover, the total 

degrees  of  f(X) and g(X) a re  equa l .  

Proof: Exercise. Notice that the first part of the lemma is 

a generalization of Lemma 2B of Chapter I . 

Let f(XI,...,X n) be a polynomial over K . For 1 ~ Z % n , 

we will write 

f ( X l ' ' "  " ~ Z  ' X~+I . . . . .  Xn) 

when the polynomial is to be interpreted as a polynomial in the 

variables X~+I,..~ n , with coefficients in the field E(XI,...,X ~) 

LEMMA 9C: If f(XI,...,X ) is irreducible (over K) , then 
n 

f(Xl,...~ , Xs 1 .... ,Xn) is irreducible (over K(XI,...,X~)) . 

Proof: This follows from the unique factorization in 

K[XI,...,X~] . The details are left as an exercise. 

We remark that if f(XI,...,X n) is absolutely irreducible 

(i.e. irreducible over K) , it does not follow that f(~l~..~ , 

absolutely irreducible (i.e. irreducible over K(XI,...,X~)). X~+I, �9 �9 �9 ,X~is 

In fact if ~ = n - 1 , the new polynomial is a polynomial in one 

variable, which cannot be absolutely irreducible unless its degree is 

one. As another example, the polynomial 

2 2 
f(XI,X2,X 3) = X 2 - XIX 3 

( • l  ,X S) has the factorization is absolutely irreducible, while f ,X 2 
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f (x ,x 2,x3  : % - x 3) % + x3 

o v e r  K(X 1)  . 

THEOREM SD: Suppose f(Xl,...,Xn) is a polynomial over an 

infinite field K . Suppose f is absolutely irreducible and of 

degree d ~ 0 . Let i ~ ~ g n - 2 . Then there is a polynomial 

g ~ f such that 

g(X l,...,xs , X~+l,...,X ) 
n 

is absolutely irreducible and of degree 

We shall need 

d (in X~+l,...,X ) . 
n 

LEMMA 3E: Let J ~ L he fields such that L is a finite 

separable algebraic extension of J . Then there are only finitely many 

fields J' with 

j_c g' c L . 

Proof: Let N be a finite separable algebraic normal extension of 

J with L ~ N . Let G be the Galois group of N over J , and let 

H be the Galois group of N over L . Then H ~ G . From Galois 

theory, we know that there is a one-one correspondence between fields 

J' with J ~ J' c L and groups H' with H c H'~ G . The number of 

such groups H' is finite, so the number of fields J' is finite. 

Remark: Separability is essential in Lemma ]E. For let F be an 

algebraically closed (hence infinite) field of characteristic p . Take 
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J = F(X,Y) c L = j ( x 1 / P , y  l / p )  

and if c E F , let 

J' = J ( (X + cy) l/P) 
C 

= j(X 1 /p  + c l / P y  l / p )  . 

Clearly j ~ j' c L , but for different choices of c E F we get 
c 

different fields J' , so that the collection of intermediate fields 
c 

is infinite. 

We begin the 

Proof of Theorem 3D: We shall tacitly assume that char K = p / 0 , 

the proof for the case char K = 0 being easier. First observe that 

P . X p f(XI,...,X n) is not a polynomial in XI,. ., n ' for if it were then 

pi pi 

f(Xl''"'Xn) = ~ a i l ' ' ' i n  X1 1 ~  Xn n 

1 1 , - . . , i  n 

x: n) 
ii...i. . Xn 

il'''" ' n n 

contradicting the assumption that f(XI,...,X ) 
n 

irreducible. We change notation and write 

is absolutely 

f = ~(x I .... ,x,Y) 

where m = n - 1 . After a linear transformation of variables 

J 

(X. = X. + c.Y ; i = 1,2,...,m) we may suppose that f is of degree 
1 1 1 

d in Y and separable in Y ~ Let ~ be a quantity satisfying 
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f ( x  I . . . .  , x  m , ~ )  = 0 , 

and l e t  L = K ( X 1 , . . . , X m , ! ~ )  Fo r  

C o n s t r u c t  t h e  f i e l d s  K(X ( c ) )  and 

a l g e b r a i c  c l o s u r e  o f  K(X~ c ) )  t h e  

LEMMA3 F: F o r  some e E K , 

K (XI ) = K (X . 

P r o o f :  For  e v e r y  e E K we have  

K(X 1 .... ,Xm) c ( K ( X : e ) ) ) o  (X 2 

c E K , p u t  

in L . 

,..-,Xm ) _c L . 

Note that L is a separable extension of K(XI,..~ 

By Lemma 3E , there are only finitely many subfields of 

K(XI,...,X m) Hence there exist two distinct elements 

such that 

or  

(c)  = X + cX 
X1 1 m 

, t h e  l a t t e r  b e i n g  

of degree d . 

L containing 

e,e' s K 

,...,X ) , 
m 

(c) 
and Z = X~ c t )  ( By T h e o r e m 3 A  , X = X 1 

But  s i n c e  X 2 , . . . , X m _  1 

i t  f o l l o w s  t h a t  

For brevity we shall write 

( X )  �9 
m 

( X m ) ( X 2 ' ' ' ' ' X m - 1 )  = l K ( x l C ' ) ) j o  [ r ~ (Xm) (X2 . . . .  'Xm-1) 

a r e  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  K(X1,X m) 
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K(x~C)) ~ a finite separable extension of K(XI c)) ( , and hence is 

there exists an element ~ such that 

Similarly, there is a 8 with 

= K(Z = K ( Z ,  . 

L e t  ~ h a v e  t h e  d e f i n i n g  e q u a t i o n  h l ( X , ~ )  = 0 , w h e r e  h 1 i s  

i r r e d u c i b l e  o v e r  E ; l e t  8 h a v e  t h e  d e f i n i n g  e q u a t i o n  h 2 ( Z , 8 )  = 0 , 

w h e r e  h 2 i s  i r r e d u c i b l e  o v e r  K . Now b y  T h e o r e m  3 A  a n d  t h e  a b s o l u t e  

i r r e d u c i b i l i t y  o f  f , K = K ~ , s o  t h a t  K i s  a l g e b r a i c a l l y  c l o s e d  i n  

L . It follows that K is algebraically closed in K(X,~) and in 

K(Z,8) . Then by Theorem 3A again, h I and h 2 are absolutely 

irreducible. Hence if ~ is of degree d I over K(X) and if 

is of degree d 2 over K(Z) , then 

[ K ( X , Z , t , ~  : K ( X , Z )  ] = d l d  2 

b y  Lemma 2A o f  C h a p t e r  I I I .  B u t  we  h a v e  

so that 

m m ' 

K ( X , Z , ~ )  = K ( X , Z , ~  = K ( X , Z , ~ , 8 )  

These three fields are extension of K(X,Z) of respective degrees 

dl,d 2 and dld 2 , so that d I = d 2 = dld 2 , and therefore d I = d 2 = 1 . 

Hence K(X c o c o = K (X and K (X c c = K(X , which proves 

the lemma. 
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We now conclude the proof of Theorem 3D . We may write 

f(X I,...,XmY) = g(X~ c), X 2 ..... Xm,Y) 

where c E K is obtained from Lemma 3F and where 

g ( X , X 2 , . . . , X m , Y )  = f ( X  - C X m , X 2 , . . . , X m , Y )  �9 

Clearly 

g(Xl'~,X2,...,Xm,Y) 

K(X~ c)) ) because 

g ( X I ' X 2 ' ' ' ' ' X m '  u 

clearly equivalent to f and is of degree d in 

. ( c )  = X2  + CXm m u s t  now b e  r e p e a t e d  by  s e t t i n g  x 2 

t o  o b t a i n  t h e  r e s u l t .  Note  t h a t  i n  t h e  l a s t  s t e p  

h e n c e  t h a t  we c e r t a i n l y  do  n e e d  t h e  c o n d i t i o n  

g(XlC),x2,...,Xm,~)( = 0 and g is irreducible. But 

is absolutely irreducible (i.e., irreducible over 

(K(x~C)))~ = K(x~C)) . By a change of notation, 

is absolutely irreducible. This ne~ polynomial is 

Y . This process 

with c 6 K , etc., 

(c) X~ + cX m X~ = 

s <_- m - l= n - 2 . 

w 4. The absolute irreducibility of polynomials (IIl) . 

Let K be a field. We have denoted by K n the n-dimensional 

vector space over K consisting of n-tuples (Xl,...,x n) with 

components in K . Suppose M is an m-dimensional linear manifold 

in K , where 1 ~ m ~ n . Then M has a parameter representation 

=Y0 + ~1~i +'" § ~m~' 

n 
where Y=O ' ~I .... ' ~m ~ K , with ~l,...y=m linearly independent, 

and where UI,...,% are parameters. We write ~ = L(~). Suppose 

M has another parameter representation 
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Then U = TU'+ t , where T is a non-singular (m • m)-matrix over 

K and t E K n L' f(X I, .,X n) = , hence L(TU I= + t)= = (U I)= �9 If .. is a 

polynomial with coefficients in K and M is a linear manifold with 

parameter representation L(~ , put 

If L' is another parameter representation of M , then 

fL,(U')_ = f(L'(U'))= = f(L(TU'= + =t)) = fL(TU j= + t)= 

Hence the polynomial fL is determined by M up to equivalence in 

the sense of w . One can therefore speak of the "degree of f on 

M" and of the irreducibility or absolute irreducibility of f on M . 

LEMMA 4A: Suppose f(Xl,...,X n) has coefficients in an infinite 

field K , is of degree d > 0 and is absolutely irreducible. Let 

n ~ 3 and suppose that m is such that 2 K m < n . Then there exists 

a linear manifold M of dimension m such that f is of degree d 

and absolutely irreducible on M . 

Proof: We may replace f by an equivalent polynomial. 

therefore asstnne by Theorem 3D that 

f(Xl,..-,Xn_m,Xn_m+l,---,X n) 

We may 

is of degree d (in Xn_m+l,...,X n) and is absolutely irreducible. 

By Theorem 2A , for polynomials in m variables of degree at most 
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d , there is a system of forms gl,...,gs in the coefficients so 

that the polynomial is reducible or of degree < d precisely if 

gl = "'" = gs = 0 . In our case, the coefficients are polynomials in 

XI,...,Xn_ m , so that we may write 

gi = gi(Xl'''''Xn-m) (i g i < s) 

Since f(Xl,...,Xn_m,Xn_m+l,...,X n) is of degree d and is 

absolutely irreducible, we must have some gi(Xl,...,Xn_m) ~ 0 , 

say for simplicity gl(Xl,...,Xn_ m) ~ 0 . Since K is infinite there 

exist elements tl'''''tn-m E K such that gl(tl,...,tn_m ) ~ O. Then 

the polynomial 

f(tl,-'-,tn_m,Xn_m+l,-..,X n) 

in variables Xn_m+l,...,X n is of degree d and absolutely irreducible. 

This means simply that the polynomial f on the manifold M given 

by 

x 1 = tl,...,x = t n-m n-m 

is of degree d and absolutely irreducible, which proves the lemma. 

Let ~ be a linear manifold of dimension m ~ 2 with parameter 

representation 

(4.1) x__=L(_~)_ :~§ u ly__l § " § ~m~ 

The polynomial fL is absolutely irreducible and of degree d precisely 

if not all of certain froms gl,...,g s in the coefficients of fL 

vanish. We have gi = gi(y=o,...,ym )= , where gl(Y0,...,Ym). = = are 
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on which f is of degree 
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variables. Since there exists a manifold 

d and absolutely irreducible, not all 

t h e s e  polynomials gi(-~O'~l'''''~n ) are identically z e r o .  

L e t  F b e  a s u b f i e l d  o f  K . We s h a l l  s a y  t h a t  a l i n e a r  m a n i f o l d  

M i n  K n i s  g e n e r i c  i f  i t  h a : ) a  p a r a m e t e r  r e p r e s e n t a t i o n  ( 4 . 1 )  

w h e r e  t h e  n(m + 1) c o m p o n e n t s  o f  Y - - o ' ~ l ' ' ' ' ' ~ n  a r e  a l g e b r a i c a l l y  

i n d e p e n d e n t  o v e r  F . ( T h a t  i s ,  t h e y  s a t i s f y  no  n o n - t r i v i a l  p o l y n o m i a l  

e q u a t i o n  i n  n(m + 1) v a r i a b l e s  w i t h  c o e f f i c i e n t s  i n  F ) .  More 

p r e c i s e l y ,  one  s h o u l d  s a y  t h a t  M i s  g e n e r i c  o v e r  F . S u p p o s e  

f ( X 1 , . . . , X  n) h a s  c o e f f i c i e n t s  i n  F and i s  a b s o l u t e l y  i r r e d u c i b l e .  

Then  some g i  (-~0 . . . .  ' ~ n  ) d 0 , w h e n c e  g i  (Y--o . . . . .  ~n ) ~ 0 i f  t h e  

c o m p o n e n t s  o f  ~ O ' ~ l ' ' ' ' ' ~ n  a r e  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  F . 

Thus  f i s  a b s o l u t e l y  i r r e d u c i b l e  on M . We t h u s  h a v e  

THEOREM 4B: Let f(~) E F[X]_ be absolutely irreducible and of 

degree d . Then on a generic linear manifold M of dimension m 

(2 ~ m & n) , the restriction of f is again absolutely irreducible 

and of degree d . 

This theorem, or rather a generalization of it, is sometimes 

called Bertini's Theorem. 

geometer Bertini (1892) 

It is connected with work of the Italian 

Example: Take n = 3 and m = 2 . The polynomial 

2 2 2 
f(Xl,X2,X 3) = X 1 + X 2 - X 3 - 1 

defines a hyperboloid of one shell in 3-space. The intersection of 
this hypersurface with a plane (a 2-dimensional linear manifold) can.) 
be an ellipse, a hyperbola, a parabola, or if the plane is tangent 

*) this includes the case when the plane is "tangent to a point at 
infinity". 

t) Note that the parameter representation is not unique. 
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to the surface, two lines. The restriction of f to a plane is 

reducible precisely if the intersection consists of two lines; that is, 

precisely if the plane is tangent to the surface. It can be shown 
that the tangent planes are the planes 

a l x  1 + a 2 x  2 + a 3 x  3 + a 0 = 0 

2 2 2 2 
w i t h  a 1 + a 2 - a 3 - a 0 = 0 . The  p l a n e s  w i t h  a 0 = 0 a r e  t a n g e n t  

t o  a n  i n f i n i t e  p o i n t  o f  t h e  h y p e r b o l o i d ,  a n d  t h e  i n t e r s e c t i o n  o f  t h e  
h y p e r b o l o i d  w i t h  s u c h  a p l a n e  c o n s i s t s  o f  two  p a r a l l e l  l i n e s  
( i . e . ,  two  l i n e s  w h i c h  i n t e r s e c t  a t  a n  i n f i n i t e  p o i n t ) .  The  o t h e r  
t a n g e n t  p l a n e s  h a v e  a n  i n t e r s e c t i o n  w i t h  t h e  h y p e r b o l o i d  w h i c h  c o n s i s t s  
o f  two  i n t e r s e c t i n g  l i n e s  ( i . e . ,  l i n e s  w h o s e  i n t e r s e c t i o n  i s  a f i n i t e  
point). 

THEOREM 4C: Let f(Xl,...,Xn) be a polynomial over F of 

degree d > 0 which is absolutely irreducible. Let n ~ 3 and let A 

be the number of 2-dimensional linear manifolds M (2). Let B denote 

the number of manifolds M (2) en which f is not of degree d or 

is not absolutely irreducible. Let ~ = 2 d k  2k w h e r e  k = ( d  +2 1 t 7  

T h e n  

Proof: 

B/A ~ ~ / q  . 

Every linear manifold M (2) has a parameter representation 

x__={o  + ~i{i +"2~ ' 

w h e r e  Y=O' Y l '  Y=2 E F n a n d  Y--1 a n d  Y--2 a r e  l i n e a r l y  i n d e p e n d e n t  q ~ 

If A t is the number of such parameter representations, then 

_ _ 1 3 n  A t = q n ( q n  1) (qn  q) >_ ~ q 

B u t  e a c h  l i n e a r  m a n i f o l d  M (2)  h a s  

2 _ - D = q (q2 1) (q2 q) 
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different parameter representations, whence 

(2) 
manifold M , 

A = A~/D �9 Now on a 

fL  (X) = f (Y0  + U1 Y=I + 5 Y--2 ) 

is a polynomial in UI,U 2 �9 By Theorem 2A , there are forms 

gl,.o.,gs in the coefficients of this polynomial such that 

gl .... gs = 0 is equivalent to the polynomial being of degree < d 

or irreducible. The degree of each gi was at most 

k 2k = ~t , 

(d + I) . (Note that f is a polynomial in say, where k = 2 L 

The coefficients of f(Yo + UI Yl + U2 Y=2 ) are polynomials in the 

coordinates of Y0' Y=l' Y=2 of degree at most d . Substituting these 

coefficients into gl,...,g s , we obtain polynomials hl,...hs in the 

coordinates of Y-~3' Y=l' Y--2 ' each of degree at most d~ ~ , and having 

the property that f(Y--o + U1 Yl + U2 Y2 ) is of degree < d or 

reducible if and only if hi(Y--0' ~i' Y=2 ) = 0 for i = 1,...,s . 

Since the restriction of f to a generic manifold M (2) is absolutely 

irreducible, some hi = hi (Y@' --YI' Y2 )' say hl, is not identically 

zero. By Lemma 3A of Chapter IV, the number of ~Y-0' _~l' Y-2 with 

h l%Z0 '  ~ l '  ~2  ) = 0 i s  a t  mos t  d ~ t q 3 n - 1  But s i n c e  e a c h  M (2) has  D 

r e p r e s e n t a t i o n s ,  

B g d k~ ~ q 3 n - 1 / D  . 

2 v a r i a b l e s ) .  

Hence 

B/A ~ d ~ t  q 3 n - i / A ~  g 2d k~t /q  = ~ / q  . 
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w 5. The number of zeros of absolutely irreducible polynomials in 

n variables. 

In this section we shall allow the symbols W(q,d) and x(d) 

to take on either one of the following interpretations: 

(i) ~(q,d) = ~f~ d 5/2 ql/2 x(d) = 250 d 5 

(ii) ~(q,d) = (d - I) (d 2)q I/2 
2 

- + d , X (d) = i . 

So if f(X,Y) is a polynomial with coefficients in F , absolutely 
q 

irreducible and of degree d > 0 , then 

(5.1) I N - ql < ~(q,d) 

whenever q > x(d) , where N is the number of zeros of f(X,Y) . 

With interpretation (i) , this statement has been proved as Theorem ]A 

of Chapter III. However the statement also holds under interpretation 

(li), as follows from the study of the zeta function of the curve f(x,y) 

(Well (1948~, Bombieri (1973)), and as may be known, to a more sophisticated 

reader. 

THEOREM 5A; Suppose f(X I ...,X n) is a polynomial over F ' q 

of total degree d > 0 and absolutely irreducible. Let N be the 

n 
number of zeros of f in F Then 

q 

(5.2) I N -  qn-11 < q n - 2 ( ~ ( q , d )  + 2d if2') , 

where ~ was defined in Theorem 4C. 

If interpretation (i) is used, we obtain 

I ~ _ q~-l] ~ qn-2 ~ d5/2 qi /2 + 2d 'ffJ') 
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If we use interpretation (ii) , then 

IN - q n - l ,  ~ q n - 2 < ( d _ l ) ( d - 2 ) q l / 2  + d 2 + 2d kg) 

n -  ( 3 / 2 )  n - 2  
(d - 1) (d - 2 ) q  + 3d  ~ q 

This theorem is due to Lang and Well (1954) , and also Nisnevich (1954) . 

However, no value of the constant 2d ~ was given . We now begin the 

let 

of 

Proof: For a 2-dimensional linear manifold 

N(M (2)) be the number of zeros of f on M (2) 

F n lies on exactly 
q 

(qn  _ 1 ) ( q n  q) 
E = 

(q2 _ 1 ) ( q 2  _ q) 

M (2) i n  F n , 
q 

E v e r y  p o i n t  

manifolds M (2) Thus 

(5.3) 
1 N = ~ ~ N(M (2) )  

M (2) 

O b s e r v e  t h a t  by  t h e  p r o p e r t y  o f  ~ ( q , d )  d i s c u s s e d  a b o v e  and  by  

Lemma 3A of Chapter IV, we have for q > M(d) , 

(5.4) I 
~(q,d) if f is absol, irred, on M (2), 

N(M ( 2 ) ) -  M (2) 1 ql < dq if f is not identically zero on 

2 M (2) q i f  f = 0 i d e n t i c a l l y  on 

LEMMA 5B: L e t  f ( X 1 , . . . , X  n) b e  a p o l y n o m i a l  o v e r  F , o f  d e g r e e  q 

d > 0 and  i r r e d u c i b l e .  S u p p o s e  f i s  n o t  e q u i v a l e n t  t o  a p o l y n o m i a l  

g ( X 1 , . . . , X n _ 2 )  , w h e r e  o n l y  n - 2 v a r i a b l e s  a p p e a r .  As i n  Theo rem 4C , 

let A be the number of 2_dimensiona! linear mapif01ds M (2) . Let C 
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be the number of manifolds M (2) where f is identically zero. Then 

3 2 
C/A ~ d / q  

Proof: Consider the planes M "2) ( parallel to the plane 

* n - 2  * 
x I = ... = Xn_ 2 = 0 ; these number A = q Let C be the number 

of those parallel planes on which f is identically zero. A typical 

plane of this type is 

(2) 
M : x I = c I ,..., Xn_ 2 = Cn_ 2 

The polynomial f can, of course, be written as 

f(XI,...,X n) = ~ Pij(Xl,... X ~)X i .X j 
,: ' n-z n-I n 

i ,  j 

(2) 
If f is identically zero on M , then 

P i j ( C l , . . . , C n _ 2 )  = 0 

for all i and j �9 If these polynomials p.. have a common factor 
ij 

g(X1,...,Xn_ 2) of positive degree, then g divides f and, since 

f is irreducible , f = cg . But by hypothesis f is not a polynomial 

in only n - 2 variables, hence the Pij have no proper common factor. 

By Lemma 3D of Chapter IV, the number of co,on zeros (el,...,en_2) 

of the polynomials Pij is at most d3q n-4 It follows that 

C ~ s d3q n-4 and 

* * d3/q2 c /A 

The s a m e  a r g u m e n t  h o l d s  f o r  p l a n e s  p a r a l l e l  t o  a n y  g i v e n  p l a n e ,  a n d  

t h e  r e s u l t  f o l l o w s .  

We now continue the 
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Proof of Theorem 5A: The proof is by induction on n. The case 

n = 1 is completely trivial, and the case n = 2 holds by what we 

said above. If f ~ g where g is a polynomial in n - 2 

2 N ~ then the number of zeros of f is q times the number 

n-2 
os g in F So by induction 

q 

IN '  _ qn-31 < q n - 4 ( w ( q , d )  + 2d ~ )  , 

variables, 

of zeros 

whence (5.2) , We may therefore suppose that f is not equivalent 

to a polynomial in n - 2 variables. Assume at first that q > x(d) 

From (5.3) and (5.4) we find that 

IN" - ~ ~ q] ~ ~ (~O(q,d) ~ 1 + dq 1 + q 1 
M (2) M (2) ) ) 

f no t  a b s o l ,  f =- 0 on M (2) 
i r r e d .  

In our established notation, it follows that 

IN - q ] ~ 7 (q,d)A + dqB + q2C 

= ( A / E ) ( ~ ( q , d ) +  d q ( B / A ) +  q2(C/A)) 

) ~ q W(q,d)  + d ~ + d 3 

2 
On the other hand if q < X (d) , then q < 2d ~ , whence 

' N -  qn - l t  < q n <  qn-2 ( ~ ( q , d ) +  2d ~ )  . 

COROLLARY 5C: Suppose  f ( X 1 , . . .  ,X n) i s  a p o l y n o m i a l  w i t h  

r a t i o n a l  i n t e g e r  c o e f f i c i e n t s  which  i s  of d e g r e e  d and a b s o l u t e l y  

i r r e d u c i b l e .  For  p r imes  p , l e t  N(p) be  t h e  number of  s o l u t i o n s  of  

t h e  c o n g r u e n c e  



Then as p ~ ~ , 

2B . 

a r e  
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f ( x l , . . . , x  n) -= 0 (rood p) . 

n - 1  r n -  ( 3 / 2 )  )~ 
N(p) = p + 0 I P 

P r o o f :  The p r o o f  i s  a c o m b i n a t i o n  o f  Theorem 5A and C o r o l l a r y  

The error terms of Theorem 5A in the two possible interpretations 

~/~  d 5 / 2 q n - ( 3 / 2 ) +  O ( q  n - 2 )  

and  

( ) ( 5 . 5 )  (d - 1 ) ( d  - 2 ) q  + O q n - 2  . 

I t  may b e  shown  ( W , i [  Qt~N~@)) t h a t  when n = 2 , t h e  

e x p o n e n t  ~ i n  t h e  e r r o r  t e r m  (d l )  (d - 2 ) q  2 
- + 0 ( 1 )  i s  b e s t  

p o s s i b l e .  A l s o  t h e  c o n s t a n t  (d - 1 ) ( d  - 2) i s  b e s t  p o s s i b l e .  

I f  g (X,Y)  i s  a p o l y n o m i a l  i n  2 v a r i a b l e s  w i t h  N p z e r o s  , t h e n  t h e  

p o l y n o m i a l  f ( X 1 , . . . , X n )  = g ( X l , X  2) i n  n v a r i a b l e s  h a s  N = N~q n - 2  

z e r o s .  Hence t h e  e x p o n e n t  n - ( 3 / 2 )  and  t h e  c o n s t a n t  (d - 1) (d - 2) 

i n  ( 5 . 5 )  a r e  b e s t  p o s s i b l e  f o r  e v e r y  n . 

On t h e  o t h e r  hand  t h e  c o n s t a n t  2d ~ i n  ( 5 . 2 )  i s  c e r t a i n l y  

t o o  l a r g e .  T h i s  i s  e s p e c i a l l y  b a d  i f  one  w a n t s  t o  e s t i m a t e  how l a r g e  q 

m u s t  b e  i n  o r d e r  t h a t  N > 0 .  W i t h  ( 5 . 2 )  one  n e e d s  t h a t  q i s  

c e r t a i n l y  l a r g e r  t h a n  2d ~ , h e n c e  t h a t  q i s  v e r y  l a r g e  a s  a f u n c t i o n  

of d . 
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Schmidt (1973) applied the method of Stepanov directly to 

equations in n variables and obtained 

n - 1  ( 3 / 2 )  6 
N > q - 3 d 3 q  n -  p r o v i d e d  q > c 0 n 3 d  

if (5.1) is used with w(q,d) given by (i), and 

n - 1  n - ( 3 / 2 )  _ 6 d 2 q n - 2  p r o v i d e d  N > q (d-l) (d-2)q 

q > c o (s n3d 5+~ 

if (5.1) is used with ~(q,d) given by (ii) 

Much more is true for "non-singular" hypersurfaces 

the deep work of Oeligne (I~73)%) 

by 

+)But see the remark in the Preface. 


